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Outline

1 Introduction

2 Crustal Vp/Vs ratio and Moho depth from stacking of multiples

3 Common Conversion Point Stacks (CCCP)

paired with lecture on seismic anisotropy (Georg Rümpker)

Tilmann (GFZ,FUB) Receiver Functions 2 / 0



Outline

1 Introduction

2 Crustal Vp/Vs ratio and Moho depth from stacking of multiples

3 Common Conversion Point Stacks (CCCP)

Tilmann (GFZ,FUB) Receiver Functions 3 / 0



Target: Imaging subsurface structure, discontinuities

TRANSALP profile Vibroseis+Explosion+passive 1998,
2001 [TRANSALP Working Group, 2002]

Controlled source reflection
seismology:

Use reflections of P energy

Method of choice for shallow
structure but energy does mostly
not penetrate deeply

No information on S velocity

Very expensive to carry out

⇒ Use earthquakes as energy source

⇒ The energy is coming from below

⇒ We need to use conversions
instead of reflections
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Moho depth and Vp/Vs ratios

Lombardi et al. [2008]

VP/VS varies typically 1.6–2.0, strongly
indicative of lithology,
felsic ⇒ mafic implies small ⇒ large VP/VS

values.
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Basics: P and S waves

VP =

√
K + 4

3µ

ρ

K Bulk modulus

µ Shear modulus

ρ Density

VS =

√
µ

ρ

At the same period S wavelength is shorter due to shorter propagation velocity
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P and S wave: interaction with interface

Incident P

Incident P ⇒ converted SV wave
(except when exactly vertically
incident)

No SH wave (T component)
converted by flat interface

Also works the other way round:
incident SV ⇒ converted P

Note that in reality the different types of motion overlap and affect the same volume.
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P and S wave: interaction with interface
Technical details

Wavefronts along interface need to stay in phase: ⇒ Snell’s law: sin ι1P

VP
= sin ι2S

VS

⇒ Converted S waves propagate more steeply than their originating P waves
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Using RF for imaging discontinuity depths

P wave from earthquake

Direct P

P-converted-SV at D

Seismic discontinuities

M

D

P-converted-SV at M

Use time-separation of waves converted from
P-to-S at discontinuities underneath the
receiver.

Take home

Interface with velocity increase with depth
shows up as positive wiggle, velocity decrease as
negative wiggle.

Fast-to-slow (e.g. Moho)

Slow-to-fast (e.g. magma chamber, LAB)
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Diffractions

Ryberg&Weber (2000) Rondenay [2009]

Anything that is not a smooth horizontal interface will give rise to diffractions, in particular also

topography of any interface.
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Incident P wave in a simple crust

R component
(SV+P)

T component
(SH)

Z component
(P+SV)

P (norm.)

SV (norm.)



Incident P wave in a simple crust

R component
(SV+P)

T component
(SH)

Z component
(P+SV)

P (norm.)

SV (norm.)

What are multiples?

Fig: A. Frassetto

NB: such a clean signal is rarely
achieved



P- and S-receiver functions

Methods – P and S Receiver Functions

P S Surface Waves
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The making of a receiver function
Multiple effects build the seismograms

R component traces at station in Australia

[Kennett, 2002]

But: the conversions are hard to see in raw data because
in addition to the sequence of interfaces, the seismograms
are influenced by

Instrument response

Source complexity

Near-source structure (e.g. surface reflections)

Each effect is combined with the others by a process
called convolution.
Here, We are interested in receiver structure
⇒ we do not need to know these effects in detail.
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Refresher: convolution and deconvolution
Noise-free synthetic data (T0 = 10s)
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NB Deconvolution is inherently unstable and needs to be regularised (different methods

available)! Aster et al. [2005]
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Refresher: convolution and deconvolution
Noisy synthetic data (T0 = 10s)
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The making of a receiver function
Isolating the receiver effect by deconvolution

The ‘receiver function’ idea: Use the P wave as proxy for the incident wave
signature (source∗ near source∗mantle propagation∗instrument) [Vinnik, 1977,

Langston, 1979].

Deconvolve vertical component from radial component to obtain RF

Deconvolution

Deconvolution - division in freq domain (fourier transformed time series)

Rf (ω) = c(ω)
R(ω)

Z(ω)

The deconvolution removes source and instrument effects (cancel in division)

⇒ RF is only dependent on the structure below receiver and incidence angle
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The making of a receiver function
Variants: component decomposition

— —
[Rondenay, 2009]

Deconvolve Z from R, or L from Q.

Take-home

ZRT RF will have large peak at 0 s/0 km. Sedimentary basins can lead to a slight shift of

LQT RF will have nearly zero amplitude at 0 s/0 km. In presence of thick sediments, strong
amplitudes near 0 km / 0 s.

For deeper structures no strong difference between both methods.

Tilmann (GFZ,FUB) Receiver Functions 16 / 0



The making of a receiver function
Variants: component decomposition

— —
[Rondenay, 2009]

Deconvolve Z from R, or L from Q.

Take-home

ZRT RF will have large peak at 0 s/0 km. Sedimentary basins can lead to a slight shift of

LQT RF will have nearly zero amplitude at 0 s/0 km. In presence of thick sediments, strong
amplitudes near 0 km / 0 s.

For deeper structures no strong difference between both methods.

Tilmann (GFZ,FUB) Receiver Functions 16 / 0



P- and S receiver functions

Crustal multiples in P-RF obscure mantle discontinuities

As conversion appear before main phase, this does not affect S-RF (but
higher noise level, lower frequency, potential contamination by other phases)



Outline

1 Introduction

2 Crustal Vp/Vs ratio and Moho depth from stacking of multiples

3 Common Conversion Point Stacks (CCCP)
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Moveout of direct phases and multiples

[Kind and Yuan, 2011]

Fig: A. Frassetto
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H − κ stacking method
Introduced by Zhu [2000] – κ = VP/VS

Observables:

∆tPs = H(ηS − ηP ) (1)

∆tPpPms = h(ηS + ηP ) (2)

∆tPsPms = 2hηS (3)

(Definitions:

ηP =
√

V −2
P − p2, ηS =

√
V −2

S − p2)

p is given by distance of earthquake
Unknowns:

H Depth to Moho

VP Average P velocity crust

VS Average S velocity crust

Redundant equations ⇒ only 2 param.can be
determined independently.
Usually one fixes VP and searches for
combinations of H and κ = VP/VS that fit the
observed RFs.
Based on trial values, calculate ∆tPS,PpmS,PsPms

and calculate

A(H, κ) = 0.7Rf (∆tPs )+0.2Rf (∆tPpPs )−0.1Rf (∆tPpSs )
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Good data: permanent stations in California
Zhu and Kanamori [2000]
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Case study: SELASOMA profile (Southern Madagascar)
Rindraharisaona et al. [2017]
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Case study: SELASOMA profile (Southern Madagascar)
ZR Receiver function stacks
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Case study: SELASOMA profile (Southern Madagascar)
ZR Receiver function stacks
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Working with less-than-perfect data
What can go wrong?

Multiples too weak, or scattered
in time

Cause Lateral heterogeneity
(dipping boundary,
small-scale heterogeneity),
gradual transition

Consequence Result is
controlled solely by Ps
conversion, perfect trade-off,
need to assume VP/VS ratio
to get H or vice versa.

Ambiguous phase identification

Cause Most prominent
discontinuity might not be
the target one (e.g. Moho);

Consequence Misinterpretation.
Completely wrong
measurements not
representative of either
discontinuity can result from
interference of multiples.

Precambrian crust - Madagascar [Rindraharisaona et al., 2017]

Well constrained Strong trade-off
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Case study: SELASOMA profile (Southern Madagascar)
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Case study: SELASOMA profile (Southern Madagascar)
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The recovered VP/VS represents an whole-crust average - it generally cannot be used to directly
identify lithologies but needs to take into account the varying crustal layers but can inform on
the dominant bulk composition

NB The VP/VS ratio measurement is generally less reliable than Moho depth measurement
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Outline

1 Introduction

2 Crustal Vp/Vs ratio and Moho depth from stacking of multiples

3 Common Conversion Point Stacks (CCCP)
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CCCP - Basic principle

Geometry for P-RF S-RF

Assume conversions occur at subhorizontal interfaces

Write seismogram amplitudes into bins along expected ray path of converted phase

⇒ Ignores diffraction (equiv. to assuming specular reflection in reflection problems)
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Synthetic example – One-layer crust (Movie)
Single earthquake
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Case study: SELASOMA profile Southern Madagascar
P-RF - Rindraharisaona et al. [2017]

Colors represent discontinuities, not absolute velocities (here: red: sudden increase with
depth)

In PS stack, multiples cause artifacts at larger depths, in PpPs and PpSs stack, artifacts
from direct conversion at shallower depths

CCCP stacks of multiples can give additional confidence
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P-RF vs S-RF
Example: Himalaya-Tibet continental collision

P-RF (high frequency):

Nábĕlek et al. [2009]

Detailed images of the crustal interfaces and Moho. Deeper
structure obscured by multiples and not shown.

S-RF (low-frequency):

Zhao et al. [2010]

Only low-resolution Moho, no
internal crustal structure. Images
mantle discontinuties, e.g. LAB
(lithosphere-asthenosphere
boundary)

Note that the cross-sections are not exactly from the same profile.
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P-RF vs S-RF direct comparison
Example: North Chile subduction zone

Time section P-RF vs S-RF

Sodoudi et al. [2011]

For reference: P-RF CCCP

Tilmann (GFZ,FUB) Receiver Functions 33 / 0



What can go wrong?
Dipping interfaces [Schneider et al., 2013]

PRF - Pamir continental subduction

Because the assumption of conversion at
horizontal interfaces, dipping structure are
shown at too shallow dip (significant effect for
dips>∼ 30◦)

CCCP stacking under assumption of dipping
interface images the steeply dipping structure
correctly but will show horizontal interfaces
(here the flat Moho) more shallow than in
reality.
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Dipping interfaces
Synthetic tests [Schneider et al., 2013]
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What can go wrong?
Dipping interfaces [Schneider et al., 2013]

PRF - Pamir continental subduction

Because the assumption of conversion at
horizontal interfaces, dipping structure are
shown at too shallow dip (significant effect for
dips>∼ 30◦)

CCCP stacking under assumption of dipping
interface images the steeply dipping structure
correctly but will show horizontal interfaces
(here the flat Moho) more shallow than in
reality.
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A more general approach: migration

Make no assumptions on smoothness or geometry of discontinuites/anomalies.
Trace seismic energy to all possible locations where conversion might have
happened. ⇒ Constructive interference at real conversion points, destructive
interference at all others.

[Rondenay, 2009]
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A more general approach: migration
Comparing (horizontal) CCCP to migration

6 in-plane incident waves at different slownesses[Rondenay, 2009]
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A more general approach: migration

However:

Requires very good information on velocity
model:
Correct velocity

Ryberg&Weber (2000)

Get frowns & smiles

Require a high density of receivers:

Sodoudi et al. [2011]

Otherwise: more smiles!
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A more general approach: migration

However:

Requires very good information on velocity
model:
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Effect of gradual transitions and frequency dependence

Kind et al. [2012]

At long periods Moho peak shifted because of interference with intra-crustal (Conrad)
discontinuity

Transitional discontinuity (here LAB) disappears

In addition to 1D effects shown, 2D - 3D effects can influence frequency dependence
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Not covered because of lack of time:

Waveform inversion (1D, 2D, 3D)

P - RF CCCP - discontinuities shown

Japan [Kawakatsu et al., 2009]

Inversion - actual velocity diff
wrt reference shown

Cascadia [Rondenay, 2009]

Deconvolution methods and sidelobes
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Summary (of sorts)

P receiver functions - high-to-medium frequency Crustal and slab imaging ⇒ CCCP
imaging/migration with direct conversion, maybe supplementary use of multiples
Average crustal velocities ⇒ H − κ-stacking
Detailed crustal velocity model ⇒ 1D waveform inversion (in combination with surface
wave dispersion from ambient noise)
‘Slab’ velocity model: ⇒ 2D, 3D waveform inversion

P receiver functions - medium-to-low frequency Target: Mantle transition zone (410, 660
discontinuites) ⇒ Station or CCCP stacking with direct conversions)

S receiver functions - low frequency Mantle lithosphere imaging
(lithosphere-asthenosphere-boundary (LAB) - mid-lithopheric discontinuities (MLD)

Pay attention to:

Artifacts from in- and out-of plane diffractions, processing

Separation of primaries from multiples

RF-methods sensitive to discontinuities not absolute velocities - subject to velocity-depth
tradeoff!
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