

Seismic anisotropy and shear-wave splitting: constraints on mantle deformation and flow

Georg Rümpker,

Miriam Reiss, Ayoub Kaviani, Frederik Link, Ingo Wölbern

Goethe-University Frankfurt

Berlin, 01.02.2018

Outline

- Seismic anisotropy in the crust and mantle causes and effects
- Effects on receiver functions with a focus on H-k stacking
- Shear-wave splitting analysis (relies on simple assumptions!)
- Waveform modeling
- Case studies South American subduction

Definition

Seismic anisotropy describes the dependence of seismic wave velocities on

- the direction of propagation or
- shear-wave polarization.

Causes of large-scale seismic anisotropy

Earth's crust

- Periodical sedimentary layering
- Geometrical ordering e.g. due to aligned cracks, magmatic inclusions (Shape-preferred orientation, SPO)
- Anisotropic crystals

Earth's mantle

Lattice-preferred orientation (LPO) of olivine due to deformation and flow processes

shear-wave splitting: V_{SH} ≠ V_{SV}

Receiver functions – converted phases isotropic case

Moho-converted S phases in the anisotropic case

Shear-wave splitting:

- Ps: 2 phases
- PpPs: 2 phases
- PpSs: 4 phases
- PsPs: 4 phases
 - = 12 phases

+ 2³=8 phases with three S-legs: PsSs

= 20 shear-wave arrivals in total

... and in the isotropic case?

Receiver-functions arrival times and amplitudes

• anisotropic crust atop isotropic mantle

Azimuthal variations of receiver functions - anisotropic crust - (Rümpke

Radial and transverse Ps waveforms

Fast, slow, and effective phases

the transverse component vanishes in isotropic media

Azimuthal variations of receiver functions - anisotropic crust - (Rümpke

(Rümpker et al., 2014)

Radial and transverse Ps waveforms

Fast, slow, and effective phases

strong anisotropy > 5 %

moderate anisotropy < 5 %

the transverse component vanishes in isotropic media

H - k stacking procedure (a) isotropic vs. (b) anisotropic version

8% anisotropy

(Kaviani & Rümpker 2015)

Azimuthal variations of receiver functions - dipping Moho

- isotropic crust

- anisotropic crust

Seismic anisotropy and teleseismic shear-wave splitting analysis

Effect of shear-wave splitting -- two splitting parameters: ϕ : "Fast-polarization direction" \leftrightarrow crystal orientation (e.g. a-axis of olivine in the mantle) δ t: "delay time" \leftrightarrow extent/strength of anisotropy

3. Februar 2018

Anisotropy and XKS-phases

Isotropic Earth and V=V(z):

SKS, XKS phases are purely radially polarized (linear particle motion)

Anisotropic Earth:

XKS phases exhibit transverse component

3. Februar 2018

SKS splitting analysis: synthetic example

2 and N-layer splitting parameters

• "apparent" parameters vary as function of backazimuth and frequency

SplitRacer – code: Shear-wave splitting analysis and interpretation

Reference & Program Download

Miriam Christina Reiss & Georg Rümpker (2017)

SplitRacer: MATLAB Code and GUI forSemiautomated Analysis and Interpretation of Teleseismic Shear-Wave Splitting, Seismological Research Letters, v. 88, i. 2A, p. 392-409, doi:10.1785/0220160191.

http://www.geophysik.uni-frankfurt.de/64002762/Software

Download Data (or import)

Pre-Processing (automatic & visual)

Splitting Analysis (Single & Multi-event)

Main Menu - Download Data

 Select stations and earthquakes

Main Menu Download Data	Select download parameters			
	Station parameters		Event parameters	
	Check data availability online		Create event list	Set event list
Pre-Process Data	Choose data center		Enter start date	2012-01
plitting Analysis	Choose network code Choose channel name Select station	BGR ETHZ GEOFON NCEDC ORFEUS IRIS	Enter end date Enter min. distance [in °] Enter max. distance [in °]	2012-12 85 140
exit			Enter magnitude	6

Splitting Analysis – Single event

for all events at 1 station

Interpretation – 1, 2 layers, continous variations

Joint-Splitting Analysis – Single Layer

• minimize transverse components for all events

Joint-splitting analysis – 2 layers

• minimize transverse components for all events

Test: results for the Swiss permanent network

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Improve interpretation: FD waveform modeling

- 2D Finite-Difference modeling
- explicit second-order
 FD scheme
- plane-wave initial conditions, defined in the isotropic mantle

Subduction-zone geometry and waveform modeling

comparsion of synthetic and observed waveform effects

- 2D Finite-difference method
- anisotropic elastic tensor
- finite-frequency effects

FD waveform modeling

displacement in X₁-direction; period: 10 s

Case studies from South America

• Trench-parallel mantle flow (Russo & Silver, 1994)

SKS-splitting measurements from the Altiplano

Waveform modeling of splitting parameters

sub-slab mantle flow parallel to the trench igodol

Waveform modeling of splitting parameters

trench-perpendicular intra-slab anisotropy
 + trench-parallel crustal anisotropy

B-type olivine under water-rich conditions (Jung et al., 2009; Ohuchi et al., 2012)

possible source of crustal anisotropy:

- ductile flow in the lower crust (Gerbault et al., 2005)
- fluid-fulled cracks within the Altiplano-Puna volcanic zone (Leidig & Zandt, 2003)

Large-scale trench-perpendicular mantle flow beneath northern Chile

IPOC network

Summary

Splitting parameters obtained from teleseismic events

IPOC

Splitting parameters from local events and fault-zone orientations

Model of anisotropy beneath the central South America

- Crust: Shape-preferred orientation (SPO) related to locally varying faults in response to the strain through crustal shortening.
- Mantle: Lattice-preferred orientation (LPO) of olivine crystals caused by fossilized anisotropy (within the slab) from plate formation and possibly entrained mantle flow.
- There is no evidence for trench-parallel flow beneath the subducting Nazca plate as previously suggested

What about the Alps? (compilation by Qorbani 2015, Vienna)

References

Reiss, M. C., <u>Rümpker, G.</u> & Wölbern, 2018, I., Large-scale trench-normal mantle flow beneath central South America, Earth Planet. Sci. Lett., 482, 115–125, DOI: 10.1016/j.epsl.2017.11.002

Reiss, M. C. & Rümpker, G., 2017, SplitRacer: MATLAB Code and GUI for semiautomated analysis and interpretation of teleseismic shear-wave splitting, Seism. Res. Lett., 88(2), DOI:10.1785/0220160191.

Kaviani, A. & <u>Rümpker, G.</u>, 2015, Generalization of the H-κ stacking method to anisotropic media, J. Geophys. Res. Solid Earth, 120, 5135–5153, DOI:10.1002/2014JB011858.

<u>Rümpker, G.</u>, Kaviani, A. & Latifi, K., 2014, Ps-splitting analysis for multi-layered anisotropic media by azimuthal stacking and layer stripping, Geophys. J. Int., 199 (1), 146-163, DOI:10.1093/gji/ggu154.

Wölbern, I., Löbl. U. & <u>Rümpker, G.</u>, 2014, Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes, Earth Planet. Sci. Lett., 392, 230-238, DOI:10.1016/j.epsl.2014.02.032

<u>Rümpker, G.</u> & Silver, P.G., 1998, Apparent shear-wave splitting parameters in the presence of vertically-varying anisotropy, Geophys. J. Int., 135, 790-800.

Seismic anisotropy (SA)

Definition: SA describes the dependence of seismic wave velocities on

- the direction of propagation or
- shear-wave polarization.

Causes

- preferred alignment of intrinsically anisotropic minerals
- the layering / geometric ordering of isotropic materials with contrasting elastic properties

Effects

- shear wave splitting or birefringence
- azimuthal dependence of body and surface wave propagation speed
- discrepancy between propagation speeds of Love and Rayleigh waves

SA is often assumed to have hexagonal symmetry (i.e., transverse isotropy) with an axis of symmetry that is either horizontal (azimuthal anisotropy) or vertical (radial anisotropy), but other orientations may occur.

SA in the upper mantle is mainly due to strain-induced crystallographic or lattice preferred orientation (CPO, LPO) of intrinsically anisotropic mantle minerals, principally olivine.

Radial anisotropy is required in the uppermost mantle to reconcile Love and Rayleigh wave dispersion.

Azimuthal anisotropy occurs when seismic wave velocity changes with the azimuth of propagation.

(see http://www.virtualuppermantle.info)

Waves and their polarizations

 φ : back-azimuth

- P-waves: Linear in radial and vertical plane.
- SH waves: Linear in the transverse direction.
- SV waves: Linear in the radial and vertical plane.
- Rayleigh waves: Elliptical in the radial and vertical plane.
- Love waves: Linear in the transverse direction.

Azimuth and Backazimuth

Transformation from NE to RT coordinates

