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Introduction
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Goals of lecture

• Introduction to seismic waves in a discrete world

• Understand methods that allow the calculation of seismic wavefields in heterogeneous
media

• Know the dangers, traps, and risks of using simulation tools (as black boxes -> turning
black boxes into white boxes)

• Providing you with basic knowledge about common numerical methods

• Knowing application domains of the various methods and guidelines what method works best
for various problems

• ... and having fun simulating waves ...
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What is Computational Seismology?

We define computational seismology such that it involves the complete
solution of the seismic wave propagation (and rupture) problem for
arbitrary 3-D models by numerical means.
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What is not covered ... but you can do tomography with ...

• Ray-theoretical methods

• Quasi-analytical methods (e.g., normal modes,
reflectivity method)

• Frequency-domain solutions

• Boundary integral equation methods

• Discrete particle methods

These methods are important for benchmarking
numerical solutions!
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Why numerical methods?
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Computational Seismology, Memory, and Compute Power

Numerical solutions necessitate the discretization of Earth
models. Estimate how much memory is required to store the
Earth model and the required displacement fields.

Are we talking laptop or supercomputer?
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Seismic Wavefield Observations
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Exercise: Sampling a global seismic wavefield

• The highest frequencies that we observe for global
wave fields is 1Hz.

• We assume a homogeneous Earth (radius 6371km).

• P velocity vp = 10km/s and the vp/vs ratio is
√
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• We want to use 20 grid points (cells) per
wavelength

• How many grid cells would you need (assume cubic
cells).

• What would be their size?

• How much memory would you need to store one such
field (e.g., density in single precision).

You may want to make use of

c =
λ

T
= λf =

ω

k
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Exercise: Solution (Matlab)

% Earth volume
ve = 4/3 ∗ pi ∗ 63713;

% smallest velocity (ie, wavelength)
vp=10; vs=vp/sqrt(3);
% Shortest Period
T=10;
% Shortest Wavelength
lam=vs*T;
% Number of points per wavelength and
% required grid spacing
nplambda = 20;
dx = lam/nplambda;
% Required number of grid cells
nc = ve/(dx3);

% Memory requirement (TBytes)
mem = nc ∗ 8/1000/1000/1000/1000;

Results (@T = 1s) : 360 TBytes
Results (@T = 10s) : 360 GBytes

Results (@T = 100s) : 360 MBytes
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Computational Seismology, Memory, and Compute Power

1960: 1 MFlops

1970: 10MFlops

1980: 100MFlops

1990: 1 GFlops

1998: 1 TFlops

2008: 1 Pflops

20??: 1 EFlops
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The Utimate Goal: Matching Wavefield Observations
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A Bit of Wave Physics



Acoustic wave equation: no source

Acoustic wave equation

∂2
t p = c2∆p + s

p → p(x, t), pressure
c → c(x), velocity
s → s(x, t), source term

Initial conditions

p(x, t = 0) = p0(x, t)

∂tp(x, t = 0) = 0
Snapshot of p(x, t) (solid line) after some time for
initial condition p0(x, t) (Gaussian, dashed line),
1D case.
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Acoustic wave equation: external source

Green’s Function G

∂2
t G(x, t ; x0, t0)− c2∆G(x, t ; x0, t0) = δ(x− x0)δ(t − t0)

Delta function δ

δ(x) =

{
∞ x = 0
0 x 6= 0

∫ ∞
−∞

δ(x)dx = 1 ,
∫ ∞
−∞

f (x)δ(x)dx = f (0) δ-generating function using
boxcars.
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Acoustic wave equation: analytical solutions

Green’s functions for the inhomogeneous acoustic wave equation for all
dimensions. H(t) is the Heaviside function.

1D 2D 3D
1
2c H(t − |r |

c ) 1
2πc2

H(t− |r|c )√
t2− r2

c2

1
4πc2r δ(t − r/c)

r = x r =
√

x2 + y2 r =
√

x2 + y2 + z2
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Acoustic wave equation: analytical solutions
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Wave Equation as Linear System

• Accurate Green’s functions cannot
be calculated numerically

• A numerical solver is a linear
system

• The convolution theorem applies

• Inaccurate simulations can be filtered
afterwards

• Source time functions can be altered
afterwards

• ... provided the sampling is good
enough ...
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Numerical Methods for Wave
Propagation Problems



Spatial Scales, Scattering, Solution Strategies

• Recorded seismograms are affected
by ...

• ... the ratio of seismic wavelength λ
and structural wavelength a ...

• ... how many wavelengths are
propagated ...

• strong scattering when a ≈ λ →
numerical methods

• ray theory works when a >> λ

• random medium theory necessary
for strong scattering media (and long
distances)
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What’s on the market

• The finite-difference
method

• The pseudospectal method

• The finite-element method

• The spectral-element
method

• The finite-volume method

• The discontinuous Galerkin
method
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The Finite-Difference Method



Finite differences in a Nutshell

• Direct numerical approximation of partial
derivatives using finite-differences

• Local computational scheme→ efficient
parallelisation

• Very efficient on regular grids, cumbersome
for strongly heterogeneous models

• Boundary conditions difficult to implement
with high-order accuracy

• The method of choice for models with flat
topo and moderate velocity perturbations

• Highly efficient extensions possible, but
rarely used!
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Meshes, grids, structured, unstructured
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von Neumann Analysis, Stability, Dispersion

• Plane waves in a discrete
world

• p(x , t) = ek j dxx−wn dt

• Simulations are conditionally
stable

• c dt
dx ≤ ε ≈ 1 CFL - criterion

• Simulated phase velocity
becomes numerically
dispersive!

• The more points per
wavelength the more accurate

• How to check?
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Numerical Anisotropy
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Applications, recent , community codes

Source: geodynamics.org (SW4)

• Method of choice for flat surfaces and
body wave problems (exploration)

• Problems for strong topography

• Very accurate (optimal) operators
possible, but ...

• Summation-by-parts approach
(better for topography)

• Combination with homogenisation
(regular grid revival)

• Community codes: SW4 (CIG),
SOFI3D (Karlsruhe)
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The Pseudospectral Method: the
road to spectral elements



The Pseudospectral Method in a Nutshell

• Calculation of exact derivatives in
spectral domain

• Less dispersive than the
finite-difference method (isotropic
errors)

• Boundary conditions hard to
implement

• Global communication scheme→
inefficient parallelisation

• Combinations with FD possible

• Hardly in use today, but concepts
used in the spectral-element method
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Exact interpolation/derivative: Fourier Series
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Applications, recent developments

Seismic wave simulation in the Moon (Wang et al., GJI, 2013)

• Axisymmetric wave
propagation (Group
Prof. Furumura)

• Implementation in
spherical coordinates

• Pseudospectral
approach in θ direction

• Finite-difference
approach in radial
direction

• Used in combination
with axisem (→
axisem3d)
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The Finite-Element Method



The Finite-Element Method in a Nutshell

• Solution of the weak form of the wave
equation

• Wavefield is interpolated with (linear)
orthogonal basis functions

• Global linear system of equations
has to be solved (matrix inversion)

• Free surface condition implicitly
fullfilled

• Works on hexahedral or tetrahedral
meshes
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Linear basis functions, system matrices

Linear finite-element method and low-order finite-difference method are basically identical
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Applications, Recent Developments

Finite element mesh, octree approach

(Bielak et al.)

• Requires linear algebra libraries for
matrix inversion

• Suboptimal for parallelization

• Allows arbitrary geometric complexity

• Curbed element boundaries possible

• Standard in engineering applications

• Hardly used in seismology (why?)
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The Spectral-Element Method



The Spectral-Element Method in a Nutshell

• Same mathematical derivation as the
finite-element method

• Lagrange polynomial representation
of wave field

• Gauss-Lobatto-Legendre collocation
points (stability!)

• Diagonal mass matrix→ trivially
inverted

• Explicit extrapolation scheme→
efficient parallelisation

• Method of choice for global wave
propagation (specfem, axisem)

• Meshing required
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Lagrange polynomials, interpolation

• Uneven grid
spacing for
high-order
polynomials→
time-stepping

• Maximum order
usually N=4

• Chebyshev was
first (why?)
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Numerical integration

• Galerkin methods necessitate
integral calculations over
elements

• They are the only source of
errors in the space
discretization (SE)

• Integration with Chebyshev
polynomials would be exact
up to order N

• Integration with same
collocation points as
interpolation
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Example, convergence
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Applications, Recent Developments

• Many applications in regional and
global seismology

• Method of choice whenever surface
waves are involved

• Spherical geometry with cubed
sphere approach

• Applications to soil-structure
interaction

• Works for hexahedral and tetrahedral
meshes (→ salvus)

• specfem maybe most widely used
community software for global
seismology (3D)
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The Finite-Volume Method



The Finite-Volume Method in a Nutshell

• Mathematically derived as a
conservation law

• Spatial discretization with arbitrary
volumes

• Extreme geometric flexibility (e.g.,
shock waves)

• Voronoi cells, tetrahedra, polygons

• Entirely local formulation (cell based)

• Communication with neighbours
through flux scheme

• Hardly used in seismology
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Fluxes, Riemann problem

The finite-volume approach allows derivation of acoustic wave equation from first principles (i.e.,
mass conservation)
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Applications, Recent Developments

Kaeser et al., 2000

• Method of choice for conservation
problems with strongly discontinuous
solutions

• Many applications in geophysical
fluid dynamics

• Relatively simple, finite-difference
style algorithms

• Linear extrapolation schemes
strongly diffusive

• Recent general extensions to higher
order

• Potential for seismology not fully
explored
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The Discontinuous Galerkin
Method



The Discontinuous Galerkin Method in a Nutshell

• Numerical solution of first-order
systems

• Developed for hyperbolic problems
(e.g., neutron diffusion)

• Local formulation for each element

• Solution of weak form of wave
equation

• Communication between elements
through fluxes→ FV

• Explicit time extrapolation→ efficient
parallelisation

• Nodal and modal approaches for
hexahedral and tetrahedral meshes 39



Fluxes, tetrahedral meshes

The first competitive scheme for tetrahedral meshes in seismology, but ...
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Applications, Recent Developments

• Applications in exploration,
volcanology, shaking hazard,
earthquake physics

• Inefficient with tetrahedral meshes
(for smooth problems)

• Method of choice for dynamic rupture
simulations

• Extremely well scalable (Gordon Bell
finalist 2015)

• New modal, octree approach
developed in ExaHype project

• Community codes: seissol (munich),
nex3d (Bochum)
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"Meet the future ..."
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Challenges - Meshing

Human time Simulation workflow cpu time
15% Design 0%
80% (weeks) Geometry creation, meshing 10%
5% Solver 90%

• Meshing work flow not well defined

• Still major bottleneck for simulation
tasks with complex geometries

• Tetrahedral meshes easier, but ...

• Salvus?
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Spectral element method - Salvus

• In development at ETH

• Spectral-element
implementation

• tetrahedral and hexahedral
meshes

• built on top of community
libraries (e.g., PetSc)

• Meshing routines for some
model classes
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Future Strategies - Alternative Formulations

Al-Attar and Crawford GJI 2016

• Particle relabelling

• Summation-by-parts

• Mapping geometrical
complexity onto regular grids

• Smart pre-processing rather
than meshing?

• Similar concept used in
summation-by-parts (SBP)
algorithms (SW4)
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Future Strategies - Homogenization

• We only see low-pass
filtered Earth

• So why simulate models
with infinite frequencies?

• Homogenisation of
discontinuous model

• Renaissance of regular
grid methods?
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Challenges - Community Platforms

www.verce.eu

• Science gateways for basic
simulation tasks

• High level model initialization

• Large scale simulations -
hidden supercomputers

• Complex admission protocols

• Black boxes

• Great idea, but ...
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Computational Seismology, Practical Exercises, Jupyter Notebooks

• Jupyter notebooks are interactive
documents that work in any browser

• Simple text editing

• Inclusion of graphics

• Equations with Latex

• Executable code cells with Python (or else)

• The coolest thing since ...

• Many examples on: www.seismo-live.org

• Computational Seismology: A Practical
Introdcution (Oxford University Press)

Try it out!
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Conclusions

The forward problem is solved, but ...
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