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Assuming that we have a method to: 
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pred
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Misfit calculation: ϕ (m )=‖d pred−dobs
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with σd variance of data noise
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‖g (m )−dobs

σd
‖
2

+α‖m−m0‖
2
+β‖∇m‖2+…→minimum

more constraints (regularization):

Classic tomography

data misfit deviation from 
starting model

smoothness

 classic optimization problem

 (highly) non-linear problem!

 inverse problem typically ill-posed , i.e. solution is non-unique and/or ill-conditioned

 assumptions (prior information) needed:

            starting model, geometric parameters of grid/mesh, 

            damping, smoothing, data noise level, etc.
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assuming a very simple inversion problem:
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Motivation: Why statistical approach?
but a real world’s inversion problem looks rather like ...

m
is

fit

V
1  or

 a
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r  b

global/local minima ...

choice of starting model …

etc.

Genetic algorithms, simulated annealing, etc.



Search strategies

option:  systematic grid-search
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Search strategies

option:  random search

m
is

fit

V
1

V 2

→ Monte Carlo methods

can be used to search the global minimum,
in optimization framework

or

generate models for further statistical analysis



Likelihood function

Conventional inversion: search for a single, “best fitting” model

MC search: assigning a likelihood to all evaluated models

+ generating (large) ensembles of models

Misfit : ϕ=‖g (m )−dobs

σ d
‖

2

Likelihood : p (d obs|m )∼exp (−ϕ (m )/2 )=exp(−1
2‖g ( m )−d obs

σd
‖

2

)
Note: even models with bad fits will have a (small) likelihood!

+ study of statistical properties of those ensembles



Bayesian approach

Bayes’ rule relating conditional probabilities:

   1701-1761

posterior = likelihood x prior / evidence

or

p (m|d obs )∼ p (dobs|m) p (m )

with

p (m|d obs )

p (d obs|m )

p (m )

posterior probability of model m given the data d
obs

 

probability of observing data d
obs

 with model m (likelihood)

prior probability density of m (what we know before..)

or

Rule: how to update our prior knowledge of model parameters by the data

Source: wikipedia

Th. Bayes, 1763:
 An essay towards solving a problem in the doctrine of chances



Probabilistic framework
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prior PDF: what we know about the 
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Probabilistic framework

posterior PDF likelihood
of model m

prior PDF: what we know about the 
model before measuring

p (m|d ) p∼ ( d|m ) p (m )

m

Modified from Sambridge & Mosegaard, 2002

m



The prior

What do we know about the model “before”, i.e. before having data?

i.e. How many cells to describe the model?

What model to start from?

How to sample different models in model space?

Which constraints on model velocities, i.e. range of values?
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Concept of non-informative prior or minimum prior knowledge (Jeffrey’s prior):

i.e. How many cells to describe the model?

What model to start from?

How to sample different models in model space?

Which constraints on model velocities, i.e. range of values?

chose completely random models with a wide range of velocities, varying number of cells, 
different noise levels, etc.
 
→ representative sampling of model space

instead, let the data decide...

minimize the number of assumptions (i.e. V>0, model described by at least one cell, etc.)

wide search range for V from V
min

 to V
max

, including “unrealistic” values

avoid any dependence of the inversion on any/most (prior) assumption made



Ensemble inference

conventional inversion: search for the best fitting model (optimization)

with MC methods we generate a large set of models by thoroughly 
sampling the model space

What is the “final” model?

What about the best fitting (most likely) of all models? 



Ensemble inference

conventional inversion: search for the best fitting model (optimization)

with MC methods we generate a large set of models by thoroughly 
sampling the model space

What is the “final” model?

What about the best fitting (most likely) of all models? 

NOT! We can do more...

Lets take advantage of the Bayesian approach - ensemble inference rather 
than optimization:

if the posterior distributions of model parameters (velocities) is +- Gaussian

take averages of the velocity at point (x,y) 
                  → reference model

calculate standard deviations of the velocity at point (x,y) 
                  → uncertainty of velocity determination (“error bar”, resolution)

other approaches: median, confidence intervals, “bounds”, etc.
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Model parametrization

- model description by regular grid

- model description by irregular mesh

interpolation between cell nuclei (linear, b-splines, etc.)



Model parametrization

- model description by regular grid

- model description by irregular mesh

Voronoi cells (tesselation)

   G. Voronoi, 1868-1908
Source: wikipedia



Model parametrization

- model description by regular grid

- model description by irregular mesh

constant values in cells:  Voronoi cells

model m (x
1
, y

1
, s

1
; x

2
, y

2
, s

2
; …. x

N
, y

N
, s

N
) with s

i 
= 1/V

i
   G. Voronoi, 1868-1908

Source: wikipedia



Solving the forward problem

Task: calculate travel times between all sources and receivers for a given velocity model

conventionally done by ray tracing, but might be slow...



Solving the forward problem

Task: calculate travel times between all sources and receivers for a given velocity model

conventionally done by ray tracing, but might be slow...

Instead we can solve the eikonal equation (Podvin & Lecomte, 1991)

(∇ t ( x,y ) )2=s2 ( x,y )

this can be done very efficiently by finite-difference methods

→ very fast!

with t – travel time field, s – slowness (1/v) field



Markov chain Monte Carlo 

Evolution of a Markov chain by 
Metropolis-Hastings Algorithm (Metropolis et al., 1953) 

start with x
0

Markov chain = sequence of models following specific rules
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Markov chain Monte Carlo 

Evolution of a Markov chain by 
Metropolis-Hastings Algorithm (Metropolis et al., 1953) 

propose x
4
 and reject it

q ( x3|x2 )

q ( x4|x3 )

q ( x1|x0 )

q ( x2|x0 )



Markov chain Monte Carlo 

Evolution of a Markov chain by 
Metropolis-Hastings Algorithm (Metropolis et al., 1953) 

propose x
5
 and so on ...

q ( x4|x3 )

q ( x4|x3 )

q ( x3|x2 )

q ( x1|x0 )

q ( x2|x0 )

Modified from Sambridge 2012



Markov chain Monte Carlo 

Evolution of a Markov chain by 
Metropolis-Hastings Algorithm (Metropolis et al., 1953) 

model PDF

MH acceptance probability

q (m1|m0 )

α (m1 ,m0)=min [1, ( p (m1|d )
p (m0|d ) )]

transition PDF from model m
0
 to m

1

p (m0|d ) p∼ (d|m0 ) p (m0)



Markov chain Monte Carlo 

Evolution of a Markov chain by 
Metropolis-Hastings Algorithm (Metropolis et al., 1953) 

model PDF

MH acceptance probability

q (m1|m0 )transition PDF from model m
0
 to m

1

p (m0|d ) p∼ (d|m0 ) p (m0)

Note: even proposed models with poorer data fits might be accepted!

α (m1 ,m0)=min [1, ( p (m1|d )
p (m0|d ) )]



Markov chain Monte Carlo 

Evolution of a Markov chain by 
Metropolis-Hastings Algorithm (Metropolis et al., 1953) 

model PDF

MH acceptance probability

q (m1|m0 )

α (m1 ,m0)=min [1, ( p (m1|d )
p (m0|d ) )]

transition PDF from model m
0
 to m

1

p (m0|d ) p∼ (d|m0 ) p (m0)

Note: even proposed models with poorer data fits might be accepted!

for exact expressions see i.e. Bodin & Sambridge, 2009 



Metropolis-Hastings algorithm

N. Metropolis developed the Monte Carlo methods
in 1950s (+ S. Ulam, J. von Neumann, E. Teller, etc.)

N. Metropolis, 1915-1999
Source: wikipedia

Hastings generalized Metropolis’ approach in 1970 
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Implementation of Metropolis-Hastings Algorithm 

1. randomly pick one cell in model m
0

   1a. randomly change slowness in this cell to create model m
1

   1b. randomly change position of this cell to create model m
1

or

2. solve forward problem, i.e. calculate misfit and likelihood of model m
1

4. accept or reject model m
1, 

then goto 1

3. calculate acceptance probability of model m
1

Metropolis-Hastings algorithm
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Synthetic example
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Synthetic example

2D velocity model, 24 sources, 24 receivers 



Synthetic example

2D velocity model, 24 sources, 24 receivers, 552 travel time picks, 50ms noise added   



Result of a conventional inversion,
 with regular grid, (FAST, Zelt & Barton, 1998):

Synthetic example

Synthetic model Recovered model

but...



Synthetic example

Synthetic model Recovered model

changing (prior) inversion parameters (smoothness, 
damping, grid size, etc.) changes the inversion result!
All of them have the same misfit!

What is “the final” result?

Result of a conventional inversion,
 with regular grid, (FAST, Zelt & Barton, 1998):



40 Voronoi cells, randomly distributed

Synthetic example MCMC



40 Voronoi cells, random velocity assigned

Synthetic example MCMC



Markov chains by perturbing cell nuclei position

Synthetic example MCMC



Synthetic example MCMC

Markov chains by perturbing cell velocities



Synthetic example MCMC

Markov chains by perturbing cell velocities



Evolution of Markov Chains

Evolution of RMS misfit of a single Markov Chain



Evolution of Markov Chains

Evolution of RMS misfit of a single Markov Chain

burn-in phase



Evolution of Markov Chains

Evolution of RMS misfit of 1000 Markov Chains

burn-in phase



Synthetic example MCMC

Single, best-fitting model of all chainsInput model



Synthetic example MCMC

Ensemble average of all chainsInput model



Synthetic example MCMC

Ensemble average of all chainsInput model

difference



Synthetic example MCMC

Input model Ensemble average of all chains deviation = error = resolution

difference



Posterior distribution
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Super resolution

one modelaverage of >50000 modelstrue model



Super resolution

4 modelsaverage of >50000 modelstrue model

averaging over sparse models results a higher resolved reference model

effective spatial resolution can be much higher than average Voronoi cell size!

“Wisdom of the cloud”→ super resolution!



Synthetic example MCMC
true model

40 cells



Synthetic example MCMC
true model

15 cells 40 cells 100 cells

different number of cells



Synthetic example MCMC

Ensemble average of all chains

good recovery

but number of cells given prior the inversion



Synthetic example MCMC

Ensemble average of all chains

good recovery

but number of cells given prior the inversion ← bad!

solution: lets treat the number of cells (complexity of model) as unknown 
  and invert for it! Let the data decide...

extending the Metropolis-Hastings algorithm to be transdimensional



Markov chain Monte Carlo 

Implementation of transdimensional Metropolis-Hastings Algorithm (reversible jump) 

1. randomly pick one cell in model m
0

   1a. randomly change slowness in this cell to create model m
1

   1b. randomly change position of this cell to create model m
1

or

3. solve forward problem, i.e. calculate misfit and likelihood of model m
1

5. accept or reject model m
1, 

then goto 1

4. calculate acceptance probability of model m
1

or

2. add a new cell at random position/slowness to create model m
1

   1c. delete this cell to create model m
1

or



40 Voronoi cells, randomly distributed

Synthetic example MCMC



40 Voronoi cells, one cell added (birth)

Synthetic example MCMC

acceptance of new model: only if velocity differs significantly from original cell!



Evolution of Markov Chains

Evolution of RMS misfit of a single Markov Chain



Evolution of Markov Chains

Evolution of RMS misfit of 1000 Markov Chains



Ensemble average of all chains with fixed noise=0.05

Final trans-dimensional model
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Ensemble average of all chains with fixed noise=0.05

Final trans-dimensional model



Synthetic example MCMC
true model

noise=0.05



Synthetic example MCMC
true model

noise=0.001 noise=0.05 noise=0.5

different assumed noise
(data variance)



Synthetic example MCMC

Ensemble average of all chains

again, good recovery

assumed noise level given prior the inversion



Synthetic example MCMC

Ensemble average of all chains

again, good recovery

assumed noise level given prior the inversion ← bad!

solution: lets treat the noise level as unknown and invert for it! Let the     
   data decide...
extending the Metropolis-Hastings algorithm to be hierarchical



Markov chain Monte Carlo 
Implementation of transdimensional, hierarchical Metropolis-Hastings Algorithm

1. randomly pick one cell in model m
0

   1a. randomly change slowness in this cell to create model m
1

   1b. randomly change position of this cell to create model m
1

or

5. calculate likelihood of model m
1

7. accept or reject model m
1, 

then goto 1

6. calculate acceptance probability of model m
1

or

2. add a new cell at random position/slowness to create model m
1

   1c. delete this cell to create model m
1

4. randomly change data variance (noise) to create model m
1

or

or



Ensemble average of all chains

Final trans-dimensional hierarchical 
model



Ensemble average of all chains: recovered noise level and model dimension

Final trans-dimensional hierarchical 
model

Noise: what we don’t fit with the data 

Model complexity: natural parsimony



Real world example
Ambient noise tomography in Australia from Bodin et al., 2012



Real world example I
Ambient noise tomography in Australia from Bodin et al., 2012

group velocity
     [km/s]

velocity error
     [km/s]



Real world example II
Controlled source seismic tomography in Namibia



Real world example II
Controlled source seismic tomography in Namibia

travel time data 
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Real world example II
Controlled source seismic tomography in Namibia



Summary
 Monte Carlo based inversions using Markov Chains can be used to thoroughly explore 

the model space

 Reference model: construction from large numbers of “good” fitting models, ensemble 
properties (wisdom of the cloud)

 Model uncertainties: error maps for model parameters can be derived by the posterior 

distribution (estimation of parameter uncertainties)

 Self-parameterizing: data itself is used to constrain the model parametrization

 Adaptive model parameterization: trans-dimensional based approaches, super-

resolution, adaptation to actual model complexity driven by data

 Estimation of data noise (as part of the data not be explained by the model)
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Summary ...

 Suitable for inversion of multi-scale data sets

 Suitable for joint inversion of different data sets (gravity-velocities, resistivity, etc.)

 Works in 1D, 2D, 3D, …

 Almost no prior knowledge needed: grid-size, starting model, smoothing, damping, …

 Disadvantage: computationally VERY expensive (orders of magnitudes higher 
compared to conventional methods)
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