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solution to the Earth resolution and imaging objective.”
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 We do not know the Earth very well … 
… and are still looking for the method to solve all our problems.

 FWI seems poorly understood outside a small group of people. 
Believe in miracles without seeing the limitations.

 Not generally understood that there are generally no ultimate solutions. 
All methods have range of applicability.
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1. Full-waveform inversion in a nutshell

• From ray tomography to full-waveform inversion
• A synthetic illustration of the main benefit

2. Real-world examples

• The Japanese islands: Recovering extremely low mantle velocities

• The Western Mediterranean: Crust/mantle resolution and uncertainty analysis
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1. Full-waveform inversion in a nutshell

• From ray tomography to full-waveform inversion
• A synthetic illustration of the main benefit

2. Real-world examples

• The Japanese islands: Recovering extremely low mantle velocities

• The Western Mediterranean: Crust/mantle resolution and uncertainty analysis

3. Big challenges

• Are our computers big enough, or will they be in the near future?
• The data flood
• Our mode of operation 

4. The Collaborative Seismic Earth Model

• Philosophy and technical implementation
• Generation 1

5. Discussion and Conclusions



FULL-WAVEFORM INVERSION IN A NUTSHELL

Exploiting complete waveforms for the benefit of improved resolution 



Numerical simulation [using SALVUS; Afanasiev et al., 2018] of aTohoku aftershock [M 6.9]

SEISMIC WAVE PROPAGATION

FWI in a nutshell Real-world examples Challenges The Collaborative Seismic Earth Model Conclusions



2011 Tohoku aftershock
Recorded at the Black Forest Observatory
Epicentral distance: 83.3°
Magnitude: 6.9
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ak135 traveltime tables, Kennett et al., 2005

1: TRAVELTIME RAY TOMOGRAPHY
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Ritsema et al., 2010                                                                                                    Obayashi et a l., 1997

1: TRAVELTIME RAY TOMOGRAPHY

 The majority [by far] of all tomographies are traveltime ray tomographies.

 First applications: Aki et al. [1977], Dziewonski et al. [1977].

 Very well established.
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Ritsema et al., 2010                                                                                                    Obayashi et a l., 1997

1: TRAVELTIME RAY TOMOGRAPHY

Pros

 Relatively simple theory.
 Computationally inexpensive.
 Possibility to incorporate a very large number of measurements.

Cons

 Ray theory is an infinite-frequency approximation for smooth media.
 Any information contained in the waveform details is ignored.



P

2: FINITE-FREQUENCY TOMOGRAPHY
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 Drop infinite-frequency approximation [better theory].

 How do waves with finite [not infinite] frequency see the Earth?



Wave type: P wave
Parameter: P velocity
Period: 10 s

Hung et al. 2000

P

2: FINITE-FREQUENCY TOMOGRAPHY
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Wave type: PP wave
Parameter: P velocity
Period: 20 s PP

PcP

Wave type: PcP wave
Parameter: P velocity
Period: 20 s

2: FINITE-FREQUENCY TOMOGRAPHY

Hung et al. 2000
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Love

Wave type: Single-mode Love wave
Parameter: S velocity
Period: 100 s

2: FINITE-FREQUENCY TOMOGRAPHY

Zhou et al. 2004
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Love

Wave type: Single-mode Love wave
Parameter: S velocity
Period: 100 s

2: FINITE-FREQUENCY TOMOGRAPHY

Zhou et al. 2004
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 First applications: Yomogida [1992], Friederich [1999]

Pros

 More elaborate theory with less approximations.
 In theory better resolution, given the right data.

Cons

 Benefits are somewhat debated.
 Still ignores anything that is not a well-defined phase.
 Variants developed so far also require smooth media.
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3: FULL-WAVEFORM INVERSION

Solve the wave equation fully numerically for heterogeneous Earth [see Heiner Igel’s talk].

 Avoid any significant modelling error [and related imaging artifacts].

 Use as much information as you can [every wiggle, if the noise permits to do so].



Rickers et al., GJI 2012.
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3: FULL-WAVEFORM INVERSION

Input model – an idealised plume 

SYNTHETIC EXAMPLE



Wavefront healing: direct wave forgets about the plume.

Deep plumes cannot be resolved with traveltime tomography 
[e.g. Treml 2006, Hwang 2011, Rickers 2012, Maguire et al. 2016].

Rickers et al., GJI 2012.
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3: FULL-WAVEFORM INVERSION

reconstructed model
using only P wave traveltimesInput model – an idealised plume 

SYNTHETIC EXAMPLE



Rickers et al., GJI 2012.
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reconstructed model
using only P wave traveltimes

reconstructed model
complete seismogramsInput model – an idealised plume 
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3: FULL-WAVEFORM INVERSION

SYNTHETIC EXAMPLE

 First theoretical attempts: Bamberger, Chavent, Lailly [late 1970’s]

 First applications in 2D: Crase, Igel, Tarantola [1990’s]

 First applications in 3D: Chen, Tape, Fichtner [nearly 10 years ago]



reconstructed model
using only P wave traveltimes

reconstructed model
complete seismogramsInput model – an idealised plume 
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Pros

 Very few mathematical approximations. [Less approximation artefacts]

 Works for realistically heterogeneous Earth models. [Sharp velocity variations of >10 %]

 Exploitation of complete seismograms. [Naturally combine body and surface wave 
tomography. Improve resolution, given the right data.]

Cons

 Algorithmically complex.
 High computational requirements [due to fully numerical wave propagation].
 Use less earthquakes.

3: FULL-WAVEFORM INVERSION

SYNTHETIC EXAMPLE



REAL-WORLD EXAMPLES

Amplitudes, crust/mantle resolution, and uncertainties



THE JAPANESE ISLANDS REGION

Simute et al., JGR 2016
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Data

• 58 earthquakes, >150 stations
• body waves, surface waves, ...

• periods: 15 – 150 s
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THE JAPANESE ISLANDS REGION

Simute et al., JGR 2016
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THE JAPANESE ISLANDS REGION

δln vs = -19 %
[vs = 3.55 km/s at 150 km depth]

Simute et al., JGR 2016
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A A’

B

B’

C

C’

Ulleung
Island

Earth is ‘slower’ than seen 
with ray tomography

[as predicted, e.g. Wielandt 1987, Igel & 
Gudmundsson 1996, Malcolm & Trampert 2011]



surface wave ray coverage

Data

• 52 earthquakes, >1000 stations
• body waves, surface waves, ...

• periods: 10 – 150 s
• 6 – 90 propagation wavelengths

Fichtner & Villasenor, EPSL 2015

THE WESTERN MEDITERRANEAN
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surface wave ray coverage

Fichtner & Villasenor, EPSL 2015

THE WESTERN MEDITERRANEAN
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N-S direction E-W direction radial direction

Resolution analysis by random probing:

 Probing the resolution matrix with random test models [second-order adjoints]

 Direction- and position-dependent resolution lengths [point-spread function width]

Fichtner & van Leeuwen, JGR 2015. 

THE WESTERN MEDITERRANEAN

FWI in a nutshell Real-world examples Challenges The Collaborative Seismic Earth Model Conclusions

efficient resolution analysis tools
[quantitative analysis instead of synthetic inverse crimes]



Intermediate take-home messages

 FWI on regional scales: It essentially works.

 Discovery of very low velocity regions. [Earth is more heterogeneous than we thought.]

o Need to go beyond purely thermal interpretation of the model.

 Joint resolution of crustal and mantle structure

o Direct view of relation between mantle structure and its surface imprint.

 Efficient resolution analysis tools are available.

o Resolution is more heterogeneous than the Earth itself.



CHALLENGES



Compressional waves 
propagate through the 

whole Earth at

min. period: ≈ 1 s

ARE OUR COMPUTERS BIG ENOUGH, OR WILL THEY SOON BE?
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Today

Global full-waveform 
inversion

min. period: ≈ 20 s

Compressional waves 
propagate through the 

whole Earth at

min. period: ≈ 1 s

Today’s computing power is at least 205 = 3.2 million times too small!

ARE OUR COMPUTERS BIG ENOUGH, OR WILL THEY SOON BE?
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Compressional waves 
propagate through the 

whole Earth at

min. period: ≈ 1 s

in ≈ 50 years

Tomography based on fully 
numerical wave propagation

min. period: ≈ 1 s

Provided that:

Moore’s law continues to hold.
We can handle computers that are 3.2 million times bigger.

We can write code to harness such resources.

Today

Global full-waveform 
inversion

min. period: ≈ 20 s

ARE OUR COMPUTERS BIG ENOUGH, OR WILL THEY SOON BE?
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Compressional waves 
propagate through the 

whole Earth at

min. period: ≈ 1 s

in ≈ 50 years

Tomography based on fully 
numerical wave propagation

min. period: ≈ 1 s

Today

Global full-waveform 
inversion

min. period: ≈ 20 s

ARE OUR COMPUTERS BIG ENOUGH, OR WILL THEY SOON BE?

Computer power alone will not solve the problem.

Provided that:

Moore’s law continues to hold.
We can handle computers that are 3.2 million times bigger.

We can write code to harness such resources.
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Data volume in the IRIS archive.

Annual growth: ≈25 %.

IRIS Data Archive as of 1 Feb 2017

currently ≈ 440 Terabytes
annual growth ≈ 25 %

THE DATA FLOOD
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Data volume in the IRIS archive.

Annual growth: ≈25 %.

IRIS Data Archive as of 1 Feb 2017

Today’s tomographic studies exploit only tiny fractions of the available data.

No technology to incorporate data across the scales into one Earth model.

No real multi-scale imaging of the Earth [global crust-mantle resolution]

THE DATA FLOOD
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OUR MODE OF OPERATION

Comparison of 12 recent tomographic images of the same object [compiled by Andrew Schaeffer]
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Comparison of 12 recent tomographic images of the same object [compiled by Andrew Schaeffer]

Very limited use of prior knowledge slows down progress.

OUR MODE OF OPERATION
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THE COLLABORATIVE SEISMIC EARTH MODEL



 Evolutionary multi-scale model.

 Successive regional refinements [e.g. when new data become available].

 Contributed by different researchers.

 Consistent with each other and with global Earth structure.

 Community-driven “divide and conquer”.

GENERAL CONCEPT
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Overview of current subregions

Afanasiev et al., Geophys. J. Int., 2016.

ORGANISATION
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Overview of current subregions

collaborators

ORGANISATION

Afanasiev et al., Geophys. J. Int., 2016.
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The global subregion

ORGANISATION

Afanasiev et al., Geophys. J. Int., 2016.
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The global subregion

 Ensure consistency of regional updates with global dataset.

Afanasiev et al., Geophys. J. Int., 2016.

ORGANISATION
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Understanding the Earth’s dynamics and evolution

 Hot convective upwellings from 100’s – 1000’s km depth.
 Key to understand: volcanism, heat budget and evolution of the Earth.

GENERATION 1
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Towards earthquake ground motion prediction

 Anticipate ground motion caused by a given earthquake.
 Inform engineers, building codes, ... .

GENERATION 1
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Near-real-time earthquake characterisation

 Better Earth model better information on earthquake properties.
 Key to improve tsunami early warning systems.
 Joint project with Australian National University and Geoscience Australia.

GENERATION 1
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FWI: Range of optimal applicability

 High-quality data. [You trust all the wiggles that you exploit.]

 Strongly heterogeneous medium. [Dv around 10 % or more, ocean-continent boundary]
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FWI: Range of optimal applicability

 High-quality data. [You trust all the wiggles that you exploit.]

 Strongly heterogeneous medium. [Dv around 10 % or more, ocean-continent boundary]

FWI: Range of methodological overkill

 Only traveltimes are trustworthy. [insufficient data quality]

 Harmless medium. [e.g., most of the Earth below 300 km depth]

FWI: Status quo

 Discovery of smaller and stronger heterogeneities.
 Interpretation requires incorporation of compositional effects [anomalies too big for being purely thermal].

 Earth may be more heterogeneous than we thought.

 Joint resolution of crust and mantle [through exploitation of body & surface waves].

 Link mantle structure and surface observables.

 Powerful random probing techniques make uncertainties accessible.
 Quantitative resolution analysis. Go beyond the chequerboard!
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Big challenges [not necessarily limited to FWI]: 

 Computer power will remain insufficient for a long time [good, if you like using your brain].

 Data flood requires man power that an individual group does not have.
 Individualism and insufficient use of prior knowledge.
 Remaining problem: Change the community’s mode of operation.
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Big challenges [not necessarily limited to FWI]: 

 Computer power will remain insufficient for a long time [good, if you like using your brain].

 Data flood requires man power that an individual group does not have.
 Individualism and insufficient use of prior knowledge.
 Remaining problem: Change the community’s mode of operation.

The Collaborative Seismic Earth Model

 Vision of a community-driven, evolutionary, global multi-scale model.
 Continued and consistent refinements on all scales.
 Generation 1 exists, with currently around 10 collaborators worldwide.

Thanks for your attention!


