Imaging Moho topography beneath the Alps by multdisciplinary seismic tomography

#### Edi Kissling ETH Zürich

SPP short course February 1+2, 2018, Berlin, Germany



#### Alpine Moho map from CSS



#### 3D Alpine crustal model from CSS





(3D velocity model based on re-interpretation of 120+ refraction seismic and nearvertical reflection profile and extraction and 3D migration of high-quality data)

## CSS and LET

With local earthquake tomography we can complement CSS imaging the 3-D seismic structure:

• in collision zones (e.g. Alpine region):



9

5

6

Absolute vp (km/s)







Elev. (km

# effects of resolution variation across a tomographic image (due to inhomogeneous data)



(resolution variation causes distortion in imaged structure)

#### example assessing resolution in LET



RDE and resolution contours (off-diagonal elements)



synthetic test with lower crustal model structure. Note different results for high- and low velocity anomalies!





E. Kissling

RRAY

#### LET Alps



-12

12

### LET Alps testing Moho resolution





=> Moho can be well resolved with high-quality local earthquake data

## LET Alps Ivrea body



based on P tomography by Diehl et al. 2009



=> Ivrea body exhibits significant geometrical variation from S to N



## Moho topography from LET





| Class | RDE                                                                                                                                                              | $V p_{\rm abs}  ({\rm km \ s^{-1}})$                                         | $Vp_{\rm grad} \ ({\rm km \ s^{-1}})$     | Resulting uncertainty (km) |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------|----------------------------|
|       |                                                                                                                                                                  | and                                                                          |                                           |                            |
| 0     | $\begin{aligned} & \text{RDE}_a \geq 2 \text{ RDE}_{\min} \\ & \text{RDE}_b \geq 2 \text{ RDE}_{\min} \\ & \text{RDE}_c \geq 2 \text{ RDE}_{\min} \end{aligned}$ | $Vp_a > 6.0 \text{ if } z_a > 25 \text{ km}$<br>$Vp_a < 6.5$<br>$Vp_c > 7.8$ | $Vp_{\rm up} < 6.9$ $Vp_{\rm down} > 7.6$ | ±5                         |
|       |                                                                                                                                                                  | either/or                                                                    |                                           |                            |
| 1     | $RDE_a \ge RDE_{min}$ $RDE_b \ge RDE_{min}$ $RDE_c \ge RDE_{min}$                                                                                                | $Vp_a > 6.0 \text{ if } z_a > 25 \text{ km}$<br>$Vp_a < 6.5$<br>$Vp_c > 7.8$ | $Vp_{\rm up} < 6.9$ $Vp_{\rm down} > 7.6$ | ±7                         |
| 2     |                                                                                                                                                                  | else                                                                         |                                           | rejected                   |

#### Moho Alps from CSS & LET combined



100

200

Profile from 46.80°N, 6.70°E to 43.80°N, 9.20°E - Profile 2

#### Moho Alps from CSS & LET & RF



## Moho Alps from CSS & LET & RF

Moho data uncertainties for CSS and RF



E. Kissling

#### Moho Alps from CSS & LET & RF



# Further steps: Vs-information, 3D crustal corrections and tectonic interpretations

(add results from ambient noise tomography, extend region of coverage)



## Thank you for your attention

