Tomography with surface waves from ambient noise

SPP short course

Emanuel Kästle

Introduction

Cross section through the western Alps

Modified from Schmid et al. (2017). Vp isolines from Diehl et al. (2009).

Geologic cross section and Vp velocities from local earthquake tomography

Introduction

Geodynamic interpretations of Alpine subduction zone

Hua et al. (2017). From teleseismic P-wave tomography.

Zhao et al. (2016). From teleseismic P-wave tomography.

Understanding the differences in tomographic models

The result of a tomographic model depends on many parameters/user choices

- Data type
- Data coverage
- Data preparation
- Data error
- Parameterization
- Inversion method
- Smoothing/damping
- Methodological approximations
- Physical properties
- ...

- Introduction
- Surface-wave tomography
 - Ambient noise measurements
 - Creation of a tomographic model
 - Depth-sensitivity kernels
- Application example
- Conclusion

Ambient Noise

Noise source intensity in northern summer

Noise source intensity in northern winter

 \rightarrow Surface waves in the Earth are generated permanently by ocean waves and are part of the ambient noise wavefield.

SPP short course

SPP short course

FU Berlin

SPP short course

FU Berlin

SPP short course

FU Berlin

SPP short course

FU Berlin

SPP short course

SPP short course

FU Berlin

Stochastic model search (Monte Carlo methods)

- Introduction
- Surface-wave tomography
 - Ambient noise measurements
 - Creation of a tomographic model
 - Depth-sensitivity kernels
- Application example
- Conclusion

FU Berlin

SPP short course

FU Berlin

150

100

CIFALPS profile

→ Very good agreement of the Moho depth between receiver functions and the surface-wave model.

VS CUS WOIST

V5 mante 1001

ENE

350

SPP short course

50

80

0

FU Berlin

200

250

emanuel.kaestle@upmc.fr

300

SPP short course

Alpine mantle structures

SPP short course

Alpine mantle structures

SPP short course

- Surface waves are best suited to get the volume averaged shear-velocity structure.
- Data from ambient noise helps to constrain shallow (crustal) structures.
- Sensitivity kernels explain how well the medium can be resolved.
- The resolution of surface-wave models decreases with depth.
- The resolution changes also considerably with the complexity of the structures.

SPP short course

- Presentation shear velocity model
 - How is the model created what kind of data?
 - Resolution checkerboard
 - Resolution vs. ray coverage
 - Uncertainty of data
 - Ray propagation model
 - •
 - Resolution 1D depth
 - Comparison between model and likelihood plot
 - Resolution below strong velocity contrast
 - Comparison between mantle structures
 - Why can we see different depth extent?
 - What is the difference in resolution at different depth?

Lateral resolution

- 3.6

3.4

3.2

3.0

2.8

Input model: 0.2° cells (~20 km)

Recovered phase-velocity map at 8s 29 (shallow crust)