





# Understanding the Alpine Mediterranean chains How we go from observations to mountain-building processes



# How is orogenic history reconstructed ?



The scale of rocks at present

Time
Space
Motion

#### The scale of continents & oceans in past



Stampfli et al. 2004

# Maps

- Geologic
- Tectonic
- Metamorphic
- Geodetic
- Paleogeographic

# Geologic map of the Central Alps



- Large-scale geologic maps show age of rock units
- Small-scale geologic maps show lithologies

# Methods for constraining Time

- Biostratigraphy
- Magnetostratigraphy
- Isotope Geochemistry

## Dating deformation with structural relationships

Age of deformed and undeformed strata bracket age of the deformation

### Folded schistosity Dikes



# Interpreted sequence of events

- 1. Folding and shearing (greensch f. schistosity)
- 2. Dike intrusion
- 3. Sedimentation
- 4. Tilting

Dike intrusion at 15 Ma (U-Pb on magmatic zircons) Sedimentation at 12,000 yrs (fauna)

- Folding > 15 Ma (depositon of gravel, minimum age)
- Tilting < 12,000 yrs

Problem: Age brackets provided by dikes and sediments may be too wide to be of use, e.g., what happe

## **Tectonic map of the Central Alps**



Tectonic maps show rock units with common motion histories

# Combining surface and deep structure

Projecting surface geology for the uppermost 20 km



Bigi et al. 1989

#### Seismology > 20 km



active-source seismology



## Example - integrated cross section of the Alps





# Physical Conditions of Subduction & Exhumation

- Temperature evolution
- Pressure, Differential stress
- Fluid composition

#### Petrological methods:

- Geothermometry, geobaromtery
- Phase equilibria
- Fluid inclusions

## **Metamorphic conditions**

#### 



# Structural & metamorphic overprinting





#### Assemblage:

- garnet
- lawsonite
- glaucophane
- white mica
- quartz

Ile de Groix, Brétagne

### **Blueschist-facies protolith**

# Greenschist-facies overprint

- epidote
- chlorite
- quartz



## **Pressure-Temperature path**



Sequence of preserved tectono-metamorphic facies defines a path of exhumation

# Metamorphic map



## **Thermochronological map**



Geochronological maps show rock units according to their thermal age (crystallization, cooling age)

# **Radiometric dating**

- Crystallization age
- Cooling age
- Mixed age



Example: decay of <sup>238</sup>U to <sup>206</sup>Pb via <sup>234</sup>Th (8α, 6β; Half time: 4.468 billion years)

## Temperature-dependence of isotopic systems

#### **Cooling ages**



#### Ages of retention & partial retention



Reiners & Brandon 2006

Cloetingh et al. 2007

# Concept of a cooling age



System opens and remains open under certain conditions (e.g., when T > T<sub>critical</sub> for given grainsize and rate of T change) Factors that can affect T<sub>c</sub>: deformation of mineral system, fluids

# **Radioactive decay**

Mineral crystallizes with N number of parent atoms:

N: # of parent atoms D: # of daughter atoms  $\lambda$ : decay constant (ln2/t<sub>1/2</sub>) t: geologic time

$$D_{(t)} = N(e^{\lambda t} - 1)$$



In reality, minerals already have daughter atoms when they crystallize:

D<sub>o</sub>: # of daughter atoms already present

=> Basic equation to determine age

$$P = D_{(t)} = D_o + N(e^{\lambda t} - 1)$$

# Pitfalls of radiometric dating

Precision and accuracy of an age determination is dependent on parameters like time, isotopic system, N/D ratio...

 N # of parent atoms measurable only if present in reasonable quantity
 D # of daughter atoms measurable only if present in reasonable quantity
 λ decay constant (ln2/t<sub>1/2</sub>) more or less well known
 D<sub>o</sub> # of daughter atoms present already when mineral crystallizes must be inferred (e.g., assumed to be 0) or corrected for

An "age" is only meaningful if it can be interpreted in a broad geological context

# **Motion - Kinematics**

- Path (direction)
- Shortening (amount)
- Rates (speed)

# The product – a quantified paleogeographic map



Paleogeographic maps show old geologic boundaries e.g., plate boundaries, ocean-continent crust boundaries

# Paleo-transport direction from shear-sense indicators

Structures that indicate the transport direction of a package of rocks with respect to neighboring rocks

### Displacement of markers - Example: Paleogene shortening in Helvetic units



# **Passive indicators**



# **Active indicators**

### for example, S-C surfaces & shear bands (relaxation structures)



Hanmer & Passschier (1990)



# Application of paleo-transport indicators on the scale of the orogen



Combine shear indicators with radiometric dating

# Methods of reconstructing past plate positions & plate motion

**Geophysical methods:** 

- Width & age of oceanic magnetic anomalies
- Polar wandering paths
- Hot spot & mantle reference frames

### Geological methods:

- Biostratigraphic correlation
- Pressure-temperatrure-time paths for rocks
- Palinspastic reconstructions (areal & volume balance)

## Restoration steps back to 84 Ma



## Application to plate motion

Motion path from structural geology (Adria with respect to Europa) Motion path from paleomagnetic data



Handy et al. 2010

Platt et al. 1989

## Map view reconstructions



Handy et al. 2015

## Conclusions – Slab motion maps



## The problem of explaining minor magmatism in the Alps



Small intrusive volumes, negligible volcanism => Narrow Alpine Tethys





McCarthy et al. 2018

# Summary

### Dating tectonics events involves two steps:

- 1. Determining sequence of events (cross-cutting relations)
- 2. Dating superposed structural markers and rock layers
  - => biostratigraphic and radiogenic ages

#### Motion determined by a combination of methods:

- 1. Kinematic indicators in deformed rocks
- 2. Biostratigraphic correlation
- 3. Paleomagnetic studies

# Physical conditions of burial (subduction) and exhumation determined in following way:

- 1. Geothermometry & geobarometry
- 2. Dating of minertal assemblages (formational, cooling, mixed ages)

The plausibility of a tectonic model can be judged by its ability to reconcile disparate datasets

Appendix

# **Tectonic map**



Tectonic maps show rock units with common motion histories

# Tectonic map with paleogeographic units

