

Die Alpen von unten beleuchtet - das AlpArray Experiment

DFG Deutsche Forschungsgemeinschaft

Mark R. Handy (Berlin) sowie viele anderen Kolleginnen und Kollegen In 17 Ländern und 64 Institutionen

Alpen-Himalaya Kette

Die Alpen und ihre Nachbarn

Warum ist ihre Untersuchung wichtig?

Wo entstehen Erdbeben?

Herd, Hypozentrum = Ort entlang der Störung wo Erdbeben entsteht

Verwerfungen in den Alpen

Friaul, 1976 M = 6.5 978 Tote

Engadiner Linie oder -Verwerfung

Google Earth

Engadin – Beispiel einer Verwerfung

Google Earth

Comersee

Wie enstehen Berge? Wie sieht's im Inneren aus?

Drei Ansätze:

1. Geophysik

2. Geologie

3. Modellierung

Geophysik - Erdbeben & -Schwingungen

Seismometer

Seismometer auf dem Boden des ligurischen Meers

Besondere Herausforderung - Datenverarbeitung

1. Datenzentren - European Integrated Waveform Data Archives (EIDA)

- Zentren in CH, D, F, I, NL 🛛 🧧
- Andere 12 Teilnehmer haben ein "partner EIDA node", Daten sind via virtuelles Netzwerk zugänglich

2. Datenbeautragter

(ETH-Zürich)

 Prüft Datenqualität, koordiniert Datenzugang

Prinzip der Tomographie

Röntgentomographie

=> Bei medizinischem Einsatz drehen die Röntgendetektoren

=> Auf Erde, sind die Detektoren (Seismometer) stationär

Scheibenschnitte

Seismische Tomographie

Edi Kissling

Erdbebenaufzeichnungen werden zu Bilder des Erdinnern

3-D Bild des Erdinnern unter den Alpen

Geologie - Blick in die Zeit zurück durch Erkundung der Oberfläche

Erfassung der Zeit – die 4. Dimension

Schichtung

Diskordante Gesteinsstrukturen

granitischer Gang

Enfassing der Zeit – die 4. Dimension

ordante Gesteinsstrukturen

Schieferung

Gang

Ermittlung von Druck (Tiefe) und Temperatur

Disthen parallel zur Schieferung eingeregelt und gestreckt => Scherrichtung während Mineralbildung

Fasern aus Carpholit + Quarz

Erfassung der Zeit – die 4. Dimension

Sediment – Archiv liefert Info über Herkunft und Alter des Gesteins und ihr Liefergebiet

Nummulit => Paläogen, c. 45 Ma

Absolute Zeit - Massenspektrometer

Studenten bei der Auswertung

Karten erstellen

Tektonische Karte => Herkunft & Bewegung

Handy & Oberhänsli 2004

Zeitscheiben durch den alpinen Raum – die Oberfläche

Handy, Ustaszewski, Kissling 2015

Zeitscheiben durch den alpinen Raum – der Mantel

Handy, Ustaszewski, Kissling 2015

Rechnergestützte Modellierung

z.B. Boris Kaus, Univ . Mainz

Hypothesen prüfen => Lirthosphärenstruktur hat auf Topographie Einfluß

Rechnergestützte Modellierung

z

Boris Kaus, Univ . Mainz

Wozu das ganze?

Prozesse im Mittelmeer-Gebirgssystem

Wechselwirkung der Kräfte im Erdinnern & an der Oberfläche

Subduzierte Platten

Warum sind Berge & Täler in den West- und Ostalpen so verschieden?

Wenige Täler in W. Alpen entlang von Verwerfungen

Westalpen Relief: 2000-3000 m Höhe: c. 2000 m

> Radial Täler entlang von Gletscherrinnen

Ostalpen Relief: 1000-2000 m Höhe: c. 1000 m

Lineare Täler in E. Alpen entlang von Verwerfungen

Erdbeben und Verwerfungen in den Süd- und Ostalpen

Vrabec et al. 2005, 2006

Indentation – die Kruste der Gebirge weicht seitlich aus

Tektonik & Landschaftsveränderung

Wie sieht's unter den Wolken aus?