

SPP Kickoff Meeting - May 17, 2017

Mountain-Building Processes in 4-Dimensions (4D-MB)

SPP 2017

Meeting Program

Morning: 10-12:30

Introductory remarks
News
SPP and AlpArray structures & administration

Lunch: 12:30-13:30

Afternoon: 13:30-16:00

Reports

- DSEBRA, LOBSTER, SWATH (Friederich, Kopp-Lange, Weber)
- Geological & Modelling projects (Handy, Kaus)

SPP:

- Data handling (Elger)
- Advertisement of SPP positions
- Schedule of geophysical and geological/geodynamic activities
- Next meetings

Detailed meeting program

Morning: 10-12:30

Introductory remarks

News

- Feedback from the DFG panel, projects funded
- AlpArray –current activities, report from EGU 2017

SPP structure

- Research themes and activity fields
- Connection to AlpArray working groups and science committee members
- International advisory board

Lunch, 12:30-13:30

Afternoon: 13:30-16:00

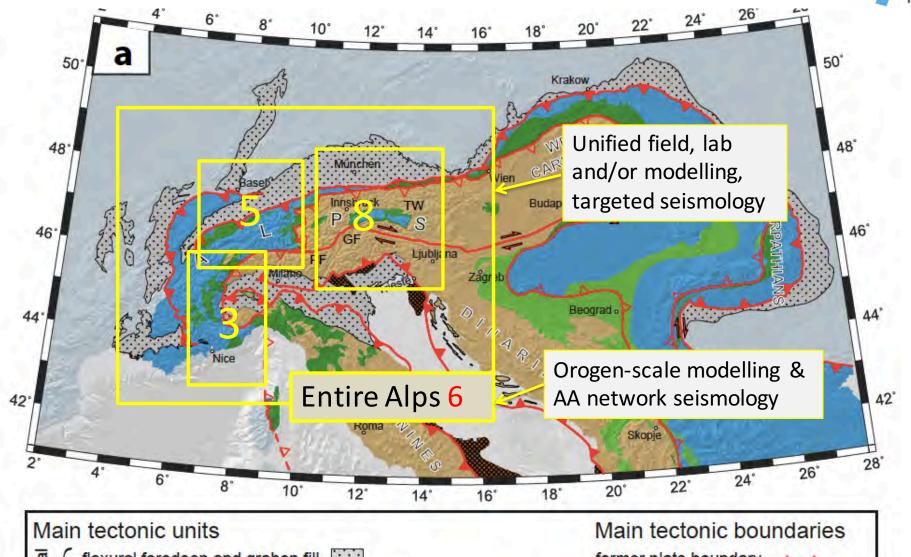
Reports

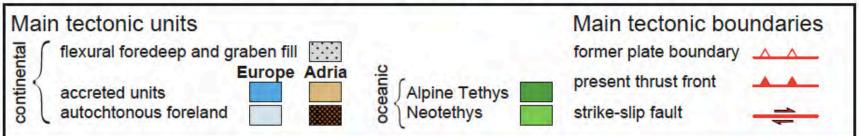
- DSEBRA (Friederich, Rümpker)
- LOBSTER (Kopp, Lange)
- SWATH (Weber)
- Overviews of Geodynamic & Thermomechanical Modelling projects (Handy, Kaus)

Other

- Data handling
- Advertisement of SPP positions
- Schedule of geophysical and geological/geodynamic activities
- Next meetings

Projects funded


NR	Pis	Title
-	Carla and a salada a la	CORE SPP ACTIVITIES (SEISMOLOGY, COORDINATION)
1	Friederich-Korn-Meier-Rümpker-Tilmann-Thomas-Wassermann	Activity Field A - UNIBRA / DSEBRA: the German seismological contribution to AlpArray
2	Kopp-Lange-Grevemeyer	Activity Field B - LOBSTER: Ligurian Ocean Bottom Seismology and Tectonics Research
4	Weber-Tilmann-Haberland	Activity Field D – SWATH D: Providing seismological data for the SPP 4D-MB,
5	Handy	Coordination of SPP
		ALL OTHER PROPOSALS
6	Friederich-Meier-Kaus	Imaging structure and geometry of Alpine slabs by full waveform inversion of teleseismic body waves
7	Froitzheim-Keppler	Slab factory – ocean formation and subduction in the Western Alps
8	Glotzbach-Kley	Constraining the near-surface response to lithospheric reorientation - Structural thermochronology along AlpArray geophysical transects
9	Gruetzner*-Reicherter-von Blankenburg	Earth surface response to Quaternary faulting and shallow crustal structure in the eastern Adria-Alpine collision zone and the Friulian plain
10	Handy-Haberland-Le Breton	Linking surface kinematics to deep structure of the Adriatic indenter near a potential subduction-polarity switch – the Giudicarie Belt (Southern Alps)
11	Kaus-Friederich-Meier	Constraining the dynamics of the present-day Alps with 3D geodynamic inverse models
12	Keppler-Stipp-Froitzheim	Alpine subduction revisited – new structural and elastic wave velocity models for improved geophysical imaging towards greater depths
13	Kind	Seismic imaging of the newly discovered Sub-Lithospheric Discontinuity (SLD) in the larger Alpine region
14	Kummerow-Cesca-Wassermann-Plenefisch	From Top to Bottom- Seismicity, motion patterns & stress distribution in the Alpine Crust
15	Lange-Thorwart-Grevemeyer	Generation, destruction and of lithosphere of the Ligurian Sea
16	Luijendijk-von Hagke	Quantifying crustal fluid flow and its role in the thermal structure of the Alps
17	Meier-Friederich-Ebbing	Surface Wavefield Tomography of the Alpine Region to Constrain Slab Geometries, Lithospheric Deformation and Asthenospheric Flow in the Alpine Region
18	Mulch-Ehlers-Methner-Mutz	Neogene Paleoelevation and Paleoclimate of the Central Alps – Linking Earth surface processes to lithospheric dynamics
19	Petrunin*	Inverse and forward multiscale numerical modeling of the Alpine orogeny (IFMMALPO)
20	Pleuger-John-Tilmann-Yuan-Kaus-Handy-Mechie	Understanding subduction by linking surface exposures of subducted and exhumed crut to geophysical images of slabs
21	Reicherter-Ritter	Stress transfer and Quaternary faulting in the northern Alpine foreland
22	Rümpker-Schmeling	Mantle deformation beneath the Alps and the physics of the subduction polarity switch - Constraints from thermomechanical modelling, seismic anisotropy
23	Scheck-Wenderoth - Ebbing-Sippel-Götze	Integrated 3D structural, thermal, gravity and rheological modeling of
24	von Hagke-Luijendijk-Hindle-Kley	FB-4D - Foreland basin evolution records the effects of plate reorganization, surface evolution and crustal deformation on mountain building


- 75% of proposals funded (usually \leq 50%); high rate attributed to relatively few applicants relative to large amount of money granted (see next slide)
- Swath C not funded (not well connected to other proposals)
- Major cuts to DSEBRA postdoc position in Frankfurt not funded
- Major cuts to Coordination proposal -only 36 month postdoc proposal was funded; 24 month postdoc position was treated as a PhD request (?) and rejected

Location of funded projects (22)

Feedback from DFG panel on proposals

Reviewers' impression of the proposals:

- Exemplary interdisciplinarity and cogency of themes; major challenge will be to bring disciplines together for the duration of the project
- Quality of proposals rather low given the ambitious pre-proposal (Frau Sonntag this is unfortunately usual for SPPs); reviewers expected more competition among proposals with similar aims (Based on past SPP experience, we tried to avoid uncoordinated proposals)
- Weak aspects: inefficient management of seismic stations among the depts. involved (too much personel); overall weaknesses in thermochronology and geodesy

For the future:

- 2nd round of the SPP may receive less funding due large amount appropriated and relatively small number of proposals in the 1st round
- Quality of proposals submitted for 2nd round must be improved
- Build multidisciplinary data base with access by all members
- Involve geodesy

Original budget & positions

Activity	Acronym	Principle Investigator (F	PostDocs)	Costs€	
Res. Projects		All Pls , all disciplines		6.100.000€	52 %
		31 PhDs + 4 PostDocs (2 PostDoc o	wn-pos,1 PostDoc1	yr)	JZ/
Scientific datas		Handy /FU Berlin	(1 PostDoc 3 yrs)	600.000€	
Central seismo Data managem		Handy/FU-Berlin (Weber/GFZ)	(1 PostDoc 2 yrs)	<u>100.000€</u>	6%
Sum		incl. 2 PostDocs	s (1 PostDoc2 yrs)	700.000€	
Seismological experiments	DSEBRA	Friederich/Bochum + 6 others	(2 PostDocs 3 yrs)	900.000€	
·	LOBSTER	Kopp / GEOMAR	(1 PostDoc 3 yrs)	400.000	17%
€	SWATH C	Parolai/GFZ + Rackwitz/TU Be			1//0
	SWATH D	Weber, Tilmann, Haberland / G	FZ (1 PostDoc 2 yrs)	<u>400.000</u> €	
Sum		incl. 5 PostDocs (2 PostDoc 2 yrs)		2.000.000€	•
		11101. 3 1 031D003 (2 1 031D0 0 2 y13)		210001000	_

Total 11.800.000 €

Incomplete! - funded budget & position	N
--	---

Activity	Acronym	Principle Investigator	(PostDocs)	Costs€	
Res. Projects		All Pls , all disciplines		x.xxx.000€	xx%
		31 PhDs + 4 PostDocs (2 PostDoc	own-pos, 1 PostDoc 1 y	/r)	XX70
Scientific datas		Handy /FU Berlin	(1 PostDoc 3 yrs)	xxx.000€	
Central seismo Data managem					х%
Sum		incl. 1 PostDo	С	xxx.000€	
Seismological	DSEBRA	Friederich/Bochum + 6 others	(1 PostDoc 3 yrs)	xxx.000€	
experiments	LOBSTER SWATH D	Kopp / GEOMAR Weber, Tilmann, Haberland / G	(1 PostDoc 3 yrs) GFZ (1 PostDoc 2 yrs)	xxx.000 € xxx.000 €	х%
Sum		incl. 3 PostDocs (2 PostDoc 2 yrs)		x.xxx.000€	

100 stations	DSEBRA	Friederich / Bochum + 6 others	3.000.000€
--------------	--------	--------------------------------	------------

xx%

Total xx.000.000 €

Schedule for 4D-MB - 1st Phase

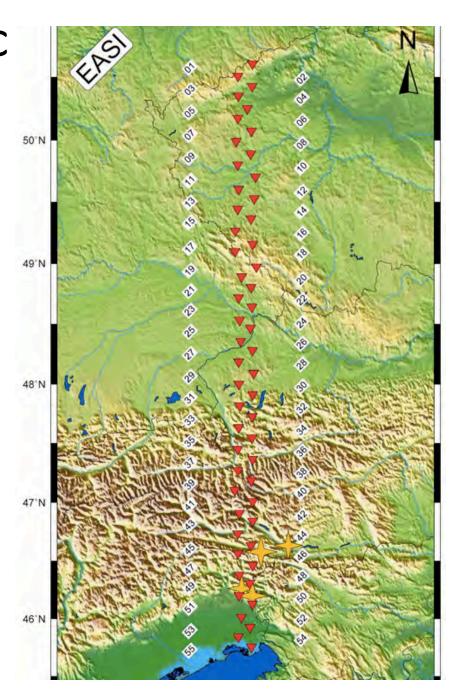
Activity Field		Activity	Preparation	1 st Funding Phase	Research Theme
Seismology	A	Deployment & data aquire Model results	UN	BRAS DSEBRA	1, 2, 3, 4
	В	Deployment & data aquire Model results	LO	BSTER	
Seis	D	Deployment & data acquire Model results		SWATH	
amics	E	Structural & thermo- chronological analysis of active & fossil fault Petrophysical studies of high-P rock Determine burial, denudation & uplift rates		field> field>	2, 3, 4 1, 3 1, 2, 4
Geodynamics	F	Develop lithospheric model of the Eastern Alps Thermo-mechanical modelling of crust & mantle		develop	1, 3, 4 1, 2, 3, 4
		Synthesis & Publication		→	

AlpArray developments

Report on stations

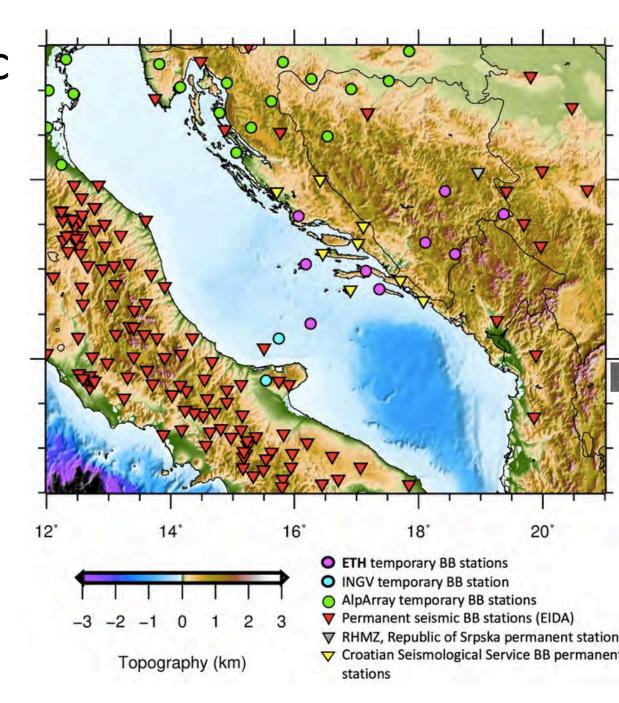
- Land-based network is almost complete and operational
- Almost 1 yr transpired since end of station evaluation period; only a few stations are delivering poor-quality data
- Permanent stations not as consistent as the mobile stations
- Station deployment will end in 2nd half of 2018, but will be extended for some countries (await summary of Györge Hetenyi)
- OBS will be deployed in June 2017, collected in Spring 2018 (see below)

Related projects


- EASI (Eastern Alps Seismic Investigation Prag-Vienna-Zürich)
- CASE (Central Adriatic Seismic Experiment) meeting in Zagreb on June 13-14, 2017 (M. Handy will attend)

Upcoming

 Working Groups need to be activated; these help to avoid unnecessary overlap, encourage networking of young researchers


Eastern Alps Seismic Investigation (EASI)

Prag-Vienna-Zürich, 55 BB Stations August 2014-August 2015

Central Adriatic Seismic Experiment (CASE)

Zürich-Zagreb-Bosnia-INGV

SPP Structure

Coordinators

M. Handy, M. Weber

Research Themes

- 1 Reorgan. of lithosphere
 M. Handy
- 2 Surface response T. Ehlers
- Deform. of crust & mantle
- 4 Motion patterns & seismicity K. Reicherter

Steering Committee

W. FriederichM. HandyBerlinTectonicsT. JohnBerlinPetrologyB. KausMainzModelling

H. KoppKiel/GEOMARMarine GeophysK. ReicherterAachenAachen/GFZBasin dynamics

T. Ehlers Tübingen Surface, Thermochron

M. Weber GFZ-Potsdam Seismology

Activity Fields

Geological activities
T. John

Thermomechanical modeling
B. Kaus

DSEBRA

W. Friederich, G. Rümpker

LOBSTER

Н. Корр

Swath

M. Weber

Relation SPP to AlpArray **ALPARRAY AlpArray Steering Committe** Steering Committee - selected members (includes M. Handy, M. Weber) **German** M. Handy - lead by the PM (E. Kissling, ETHZ) members | M. Weber - responsible for overall coordination WG1 Procedures and Data Science council **AlpArray Science Council** Management 1 representative/institute + PM T. Ehlers - surface, thermochr T. Ehlers, W. Friedrich, M. Handy, SPP SC + T. John, H. Kopp, M. Korn, WG2 Seismic Network Operation M. Korn - seismology S. Parolai, J. Ritter, K. Reicherter, J. Ritter additional T. Meier - seismology G. Rümpker, M. Scheck-Wenderoth, C. Spiegel, J. Wassermann G. Rümpker - seismology members WG3 Research and Interpretation lead by the PM M. Handy, B. Kaus, T. Meier scientific leadership (by 2/3) J. Wassermann - seismology majority vote of all members) - elects Steering Committee WG4 Outreach and Education AAWG AlpArray Working Group = all participants **SPP Steering Committee** SPP-2017 4D-MB W. Friederich Bochum Seismology Steering Committee M. Handy Berlin **Tectonics** W. Friedrich 4D-MB T. John Berlin Petrology M. Handy T. John - Sprecher: M. Handy Modelling B. Kaus Mainz B. Kaus - Steering Committee Kiel/GEOMAR Marine Geophy H. Kopp H. Kopp - SPP-members -S. Parolai all PIs of SPP projects K. Reicherter Aachen **Neotectonics** K. Reicherter M. Scheck-Wenderoth L. Scheck-W. Aachen/GFZ Basin dynamics C. Spiegel T. Ehlers Tübingen Surface, Thermochron M. Weber M. Weber Potsdam/GFZ Seismology

International SPP Advisory Board

The creation of an international advisory board was suggested by the DFG Panel.

Advantages:

Possibly gives the SPP a high visibility, at least formally

Disadvantages:

- Unwieldy administrative work to keep members informed, regular invitations, etc.
- Members may exert undue influence on the SPP

Alternative: Ask colleagues external to the SPP to hold keynote talks at SPP meetings; these colleagues can then be consulted during the preparatory stages of the 2nd phase

Advantages:

More flexible, less burocratic

Lunch - 12:30-13:30

SPP activity fields

Geological activities
T. John

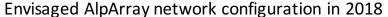
DSEBRA

W. Friederich, G. Rümpker

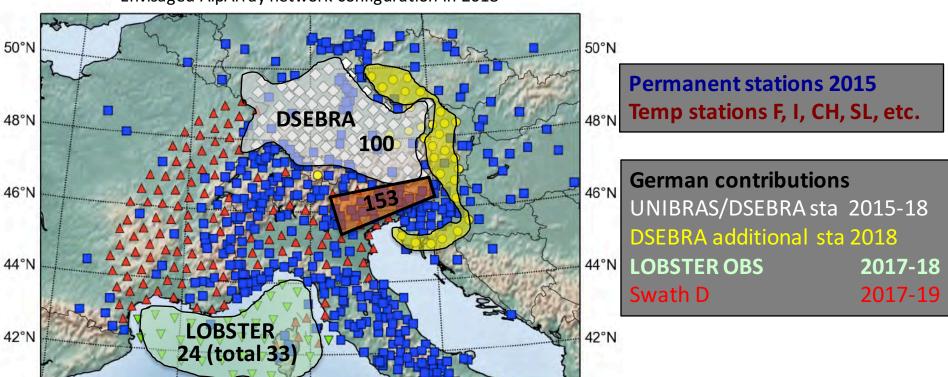
Thermomechanical modeling
B. Kaus

Swath

M. Weber


LOBSTER

Н. Корр



Seismological Activities – DSEBRA, LOBSTER, SWATH

10°E

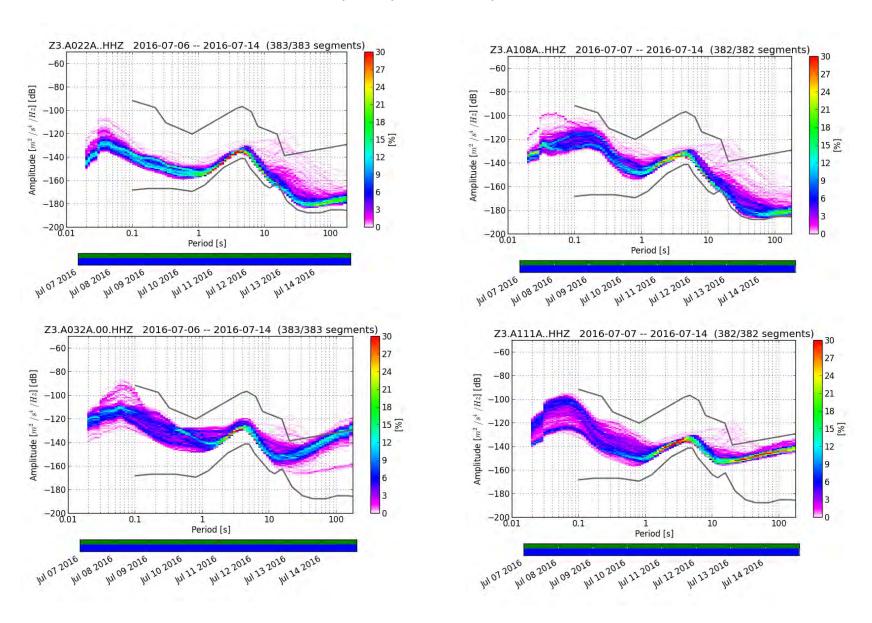
15°E

SPP contributions to the AA network:

5°E

Deployment & operation of 100 land stations (**DSEBRA**) & 23 of 32 ocean-bottom stations (**LOBSTER**)

SPP targeted study:


Densified station **swath (153 stations)** deployment, operation, data acquisition & research projects

Report – UNIBRAS & DSEBRA (W. Friederich)

Task	Action	Who	Until When
Ordering of instruments	Technical description of seismometers and data loggers	WF, JW, TM, GR, CT	May 25
	Teilnahmewettbewerb for seismometers and data loggers	DFG	
	3 offers for less expensive items below 209.000 Euro net	WF, JW, TM, GR, CT	June 16
Hiring of personnel	Job advertisement for 1 scientist and 1 technician	JW	Done
	Selection and contract	JW	July, 31
Aquisition of instruments	Ordering of seismometers, ordering of data loggers	DFG	
	Ordering of other parts	DFG	
	Delivery of seismometers	Manufacturer	12/17-03/18
	Delivery of loggers	Manufacturer	10/17-01/18
Installation of DSEBRA	Preparation and assembly of stations, Testing	Personnel+PIs	09/17 -
	Deployment of stations		01/18 -

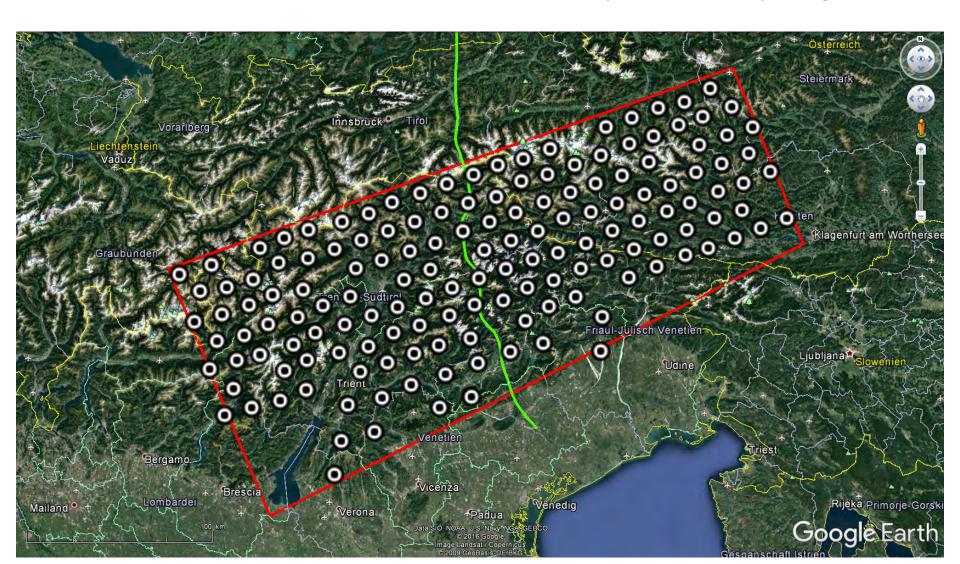
Report – UNIBRAS & DSEBRA (W. Friederich)

Data quality - PPSD Spectra

Report – UNIBRAS & DSEBRA (W. Friederich)

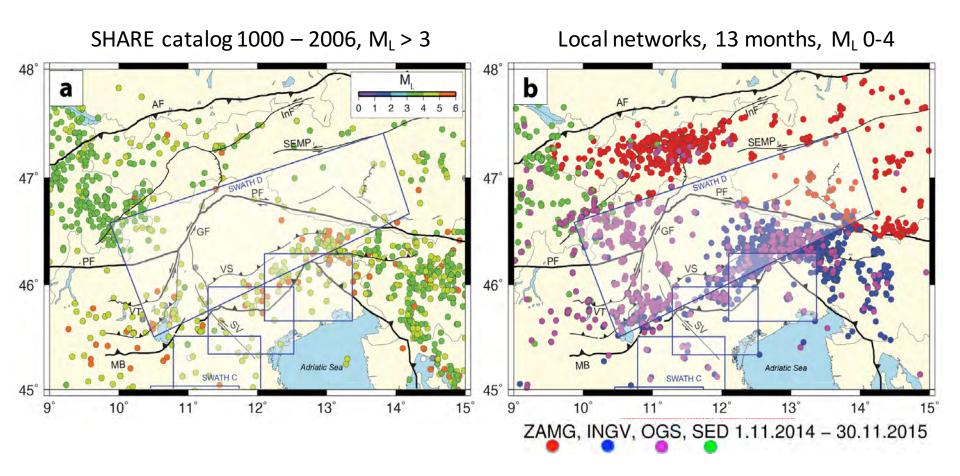
Funding reality:

- Funds for personnel cut by 50% (proposal GR)
- Travel funds for maintenance cut by 50% (by accident?)
- Funds for operation (power, data transfer, Seiscomp support) cut by 50% (by accident?)
- > Total loss of about 60.000 Euros!!


Potential workarounds:

- Personnel support by other DSEBRA PIs (PhD students, HiWis)
- Continuation of funding of operation by DSEBRA PIs until granted money is spent to save central operation funds.
- Reduce SeisComp support and/or shift to investments (?)
- Reduce costs for data transfer
- Stretch maintenance intervals
- Use Programmpauschale funds for operation
- De-install earlier than planned

Report – SWATH (M. Weber)


M. Weber, Ch. Haberland, F. Tilmann, B. Heit

153 station locations (pre-scouted, spacing c. 700 m)

Report – SWATH (M. Weber)

Seismicity within the Swath

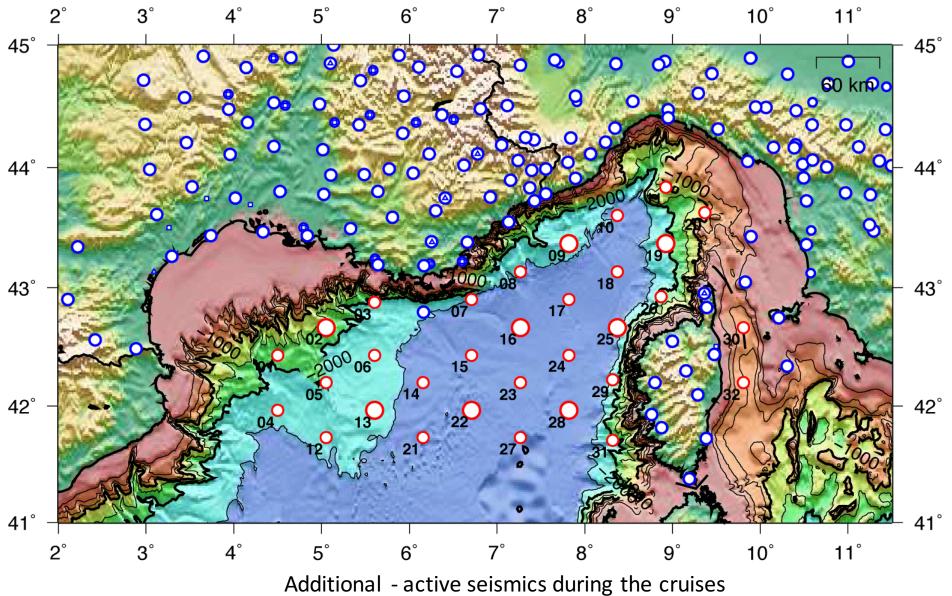
Report – SWATH (M. Weber)

Schedule of activities

2017

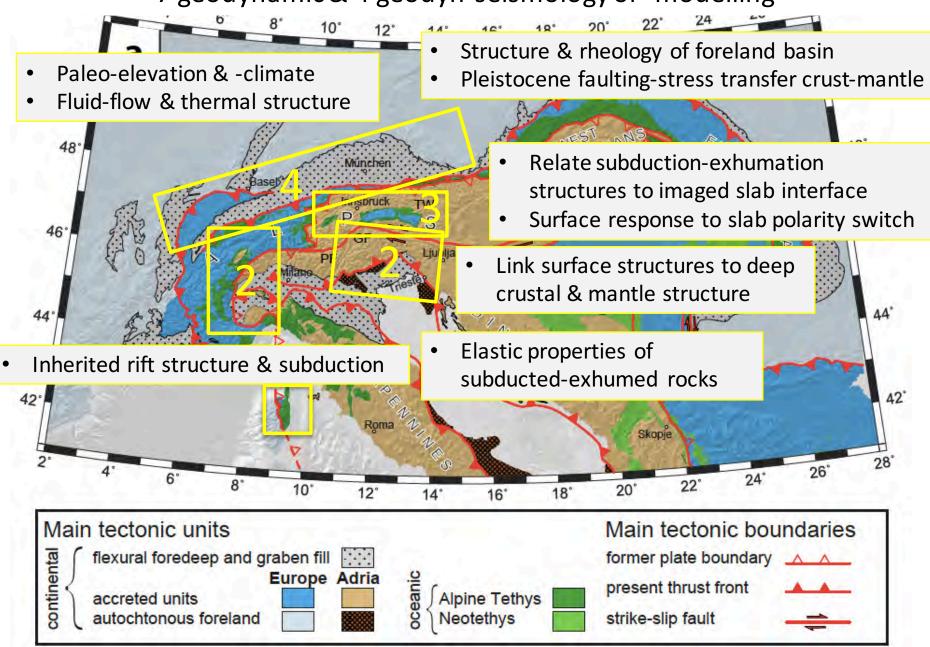
- Site assessment May/June/July
- Deployment June/July/August/September

2018

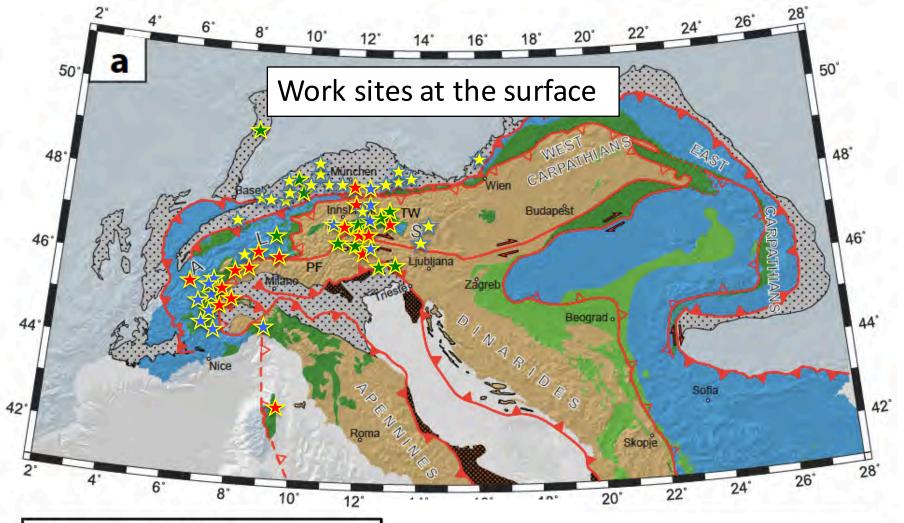

- Maintenance
- Maintenance

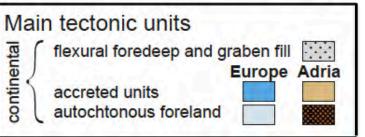
2019

• 1. De-installment Summer


Report – LOBSTER (H. Kopp)

23 German & 7 French OBS stations, Deployment: 14-28.6.2017, Gathering: spring 2018




Report - funded geodynamic projects (M. Handy)

7 geodynamic & 4 geodyn-seismology or -modelling

Report - funded geodynamic projects (M. Handy)

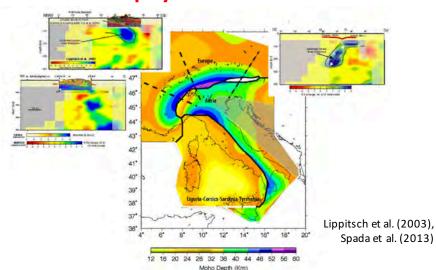
1 - Reorg. of the lithosphere

2 - Surface response to deep processes

3 - Deform. of crust & mantle

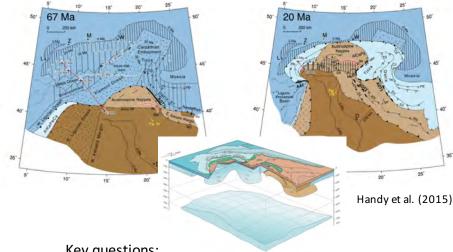
4 - Motion patterns & seismicity

Research Themes


Report – Thermomechanical Modelling (B. Kaus)

Overall goal of modelling

Link observations (geological/geophysical) with


Mechanics of mountain-building processes in 4D

Geophysical data

- Structure/geometry of the lithosphere?
- Rheology of the crust and lithosphere?
- Which dynamic/mechanical models are consistent with various geophysical data (GPS, gravity, seismic tomography, seismic anisotropy, EQ focal mechanisms)?

Geodynamic data

Key questions:

- How does lithospheric collision work?
- How do specific processes work (subduction polarity) switch, nappe folding)
- What is the interaction between large-scale mantle flow and regional scale plate collision processes?

Report – Thermomechanical Modelling (B. Kaus)

Funded modelling projects

Present-day Alps

- Constraining the dynamics of the present-day Alps with 3D geodynamic inverse models. Kaus/Friederich/Meier
- INTEGRATE: Integrated 3D structural, thermal, gravity and rheological modeling of the Alps and their forelands. Scheck-Wenderoth/Ebbing/Götze/Sippel

4D Evolution

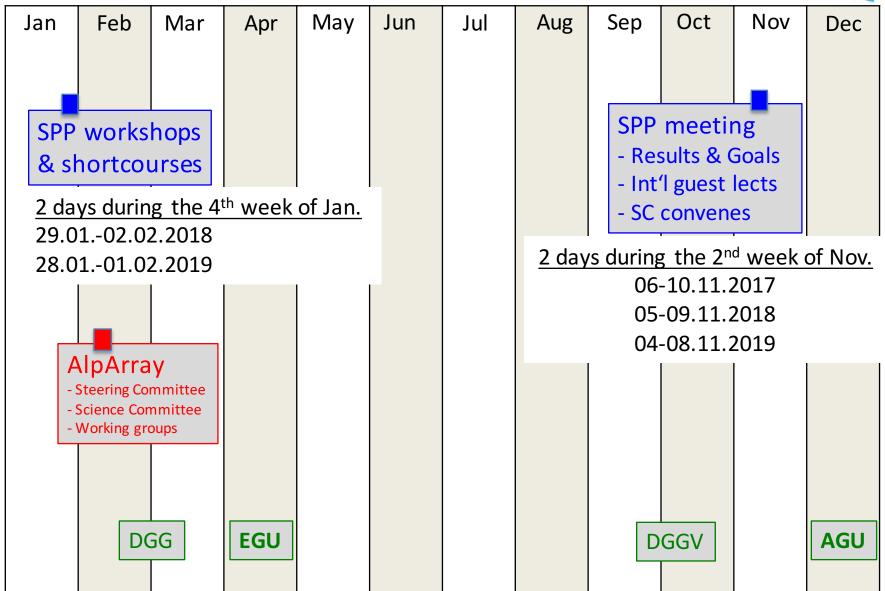
- Mantle deformation beneath the Alps and the physics of the subduction polarity switch - Constraints from thermomechanical modelling, seismic anisotropy and waveform modelling. Rümpker/Schmeling
- IFMMALPO: Inverse and forward multiscale numerical modeling of the Alpine orogeny. *Petrunin*.

Report – Thermomechanical Modelling (B. Kaus)

Funded projects with a modelling component

Present-day Alps

- Imaging structure and geometry of Alpine slabs by full waveform inversion of teleseismic body waves (comparison with 3D geodynamic models).
 Friederich/Meier/Kaus
- Surface Wavefield Tomography of the Alpine Region to Constrain Slab Geometries, Lithospheric Deformation and Asthenospheric Flow in the Alpine Region (comparison with 3D geodynamic models). Meier/Friederich/Ebbing


4D Evolution

- Constraining the near-surface response to lithospheric reorientation Structural thermochronology along AlpArray geophysical transects (thermokinematic cooling-age modelling). Glotzbach/Kley
- Neogene paleoelevation and paleoclimate of the Central Alps Linking Earth surface processes to lithospheric dynamics (thermokinematic cooling age modelling). Mulch/Ehlers/Methner-Mutz.
- Understanding subduction by linking surface exposures of subducted and exhumed crust to geophysical images of slabs (geodynamic models of folding in the subduction channel). Pleuger/John/Tilmann/Handy/Kaus/Yuan/Mechie

SPP – proposed annual schedule

SPP - Data management (Kirsten Elger, GFZ)

Some thoughts for the SPP

Requirement: DFG requires SPP to make metadata from project

available during or after publication of papers

Challenge: no SPP data manager was funded

What we seek:

- To collect data and make it available to SPP members
- To render the collected data citeable in publications
- To make published data accessible to broader geoscience community after publication

SPP - Data management (Kirsten Elger, GFZ)

Some thoughts for the SPP

Data possible to be collected:

- Seismological waveforms stored in GEOFON which provides standardised, archived DOIs for seismic networks
- Geological structural measurements, thermochronological data, geomorphological data, etc.

Data products:

- Seismological data products => e.g., tomographic slices
- Geological data products => data plotted on 3-4 standardized maps of the Alps, possibly also cross sections, data tables

SPP - Data management (Kirsten Elger, GFZ)

Some thoughts for the SPP

- Tools like the GFZ Metadata Editor (ME) can facilitate metadata generation and distribution (for Discovery)
- Metadata standards, machine executable, interoperable
- ME can easily be adapted to include additional metadata fields relevant for SPP / AlpArray (example: EPOS)
- We can build the database for a SPP / AlpArray Discovery Portal, provided that researchers submit metadata for their data
- ME can be used to register DOIs
- Data publication via data repositories guarantees the availability of data beyond the SPP funding period

Conclusion: SPP Steering Committe will find 4 colleagues from different disciplines to develop a concept for data management along the lines presented above by the next SPP meeting in November 2017

Advertisement of SPP positions

<u>Suggestion</u>: One overall advertisement (example: SPP-Earthworks) that lists all PhD project names and universities (one line per project, each with a link to the full advertisement on the corresponding webpage of the project group). Advertisement sent to *Earthworks* and *EOS*.

Advantages:

- High visibility of 4D-MB in the community
- High attractivity for PhDs and Postdocs
- Does not qualify as an official advertisement under German law

Disadvantages:

 If notification appears before the official advertisment is published, the website must tell the prospective applicant when applications can be accepted.

AlpArray Working Groups

http://www.alparray.ethz.ch/home/

- Surface Waves => 1st meeting in Bologna, 17/18.11.2016
- Gravity
- Local Earthquake Tomography
- Earthquake catalogue

=> Further groups can/should be founded!

AlpArray Collaborative Projects

http://www.alparray.ethz.ch/home/

Topics

- Structure, fabric and flow of lithosphere-mantle system beneath the Alpine region
- Geodynamics of Alpine Orogeny
- Seismicity, Seismotectonics and Seismic Hazard
- New Methods and Opportunities in Seismic Imaging

Regional Themes:

- Western Alpine arc and Northern Apennines: resolving slab interaction
- Eastern Alps, Dinarides and Bohemian Massif
- Alpine forelands establishing structure, composition and deformation history

=> Need SPP members to take the initiative on these projects!

See you all at the SPP meeting in November!

Extra slides

Friederich, Korn, Meier, Rümpker, Tilmann, Thomas, Wassermann

Goals: Determine elastic properties of deep Alpine lithosphere

Challenge:

Methods: application of FWI to teleseismic body waves (P & S)

Targets: all

Personel: 2 PhDs Theme(s): 1 (3) Activity field(s): A, F

Friederich, Meier, Kaus

<u>Goals:</u> Obtain data for high resolution images of Alpine crust and mantle Challenge: DSEBRA - Deploy and operate land-based BB seismometers

<u>Methods:</u> Deployment & operation of BB seismometers

Targets: northern and eastern parts of Alps

Personel: 2 Postdocs

Theme(s): relevant for all

Activity field(s): A

Froitzheim & Keppler

Goals: Relate inherited rift and spreading structure of Alpine margins to current slab geometry

Challenge: Reconstruct kinematics and timing of opening of ocean basins

Methods: structural geology, U-Pb and Lu-Hf dating

Targets: W Alps (Versoyen, Monte Rosa, Cogne, Canvese, Dora Maira)

Personel: 1 PhD Theme(s): 3 (1) Activity field(s): E (B)

Glotzbach & Kley

Goals: Surface response to slab breakoff and polarity switch

Challenge:

Methods: AHe, ZrHe; cross-section balancing

<u>Targets</u>: Sampling; Subalpine Molasse, S of SEMP along EASI transect; Balancing (NFP20E, TRANSALP, EASI)

<u>Personel</u>: 1 PhD Theme(s): 2, 3 Activity field(s): F

Gruetzer, Reicherter, von Blankenburg

Goals: Surface response to Pliocene faulting

Challenge: Determine age and kinematics of active faults at surface, connect these with deep crustal images (swath C)

Methods: tectonophysical map of the Alps,

Targets: entire Alps

Personel: 1 Postdoc (own position), 1 PhD

Theme(s): 4, 3

Activity field(s): E (C, D)

Handy, Le Breton, Haberland

Goals: Link faults at surface with deep crustal

Challenge: Trace active faults from surface to depth, reconstruct Giudiacrie Belt back in time

Methods: cross section construction and balancing, processing and interpretation of seismological data (swaths D, C)

Targets: transition C and E Alps

Personel: 2 PhDs Theme(s): 1, 3

Activity field(s): D, E (C)

Kaus, Friederich, Meier

Goals: Understand which crust/mantle, thermal states and rheologies are consistent with geophysical properties of the Alps

Challenge: Compare model results with geophysical data

Methods: geodynamic inverse modelling

Targets: Alpine upper mantle

<u>Personel</u>: 1 PhD <u>Theme(s):</u> 1 Activity field(s): F

Keppler, Stipp, Froitzhiem

<u>Goals:</u> Determine elastic wave anisotropies of subducted rocks Challenge: Provide a data base for interpretation of seismic images

<u>Methods</u>: measure CPO (Neutron Diffraction); measure Vp, Vs of samples at hi P Targets: W & C Alps (Dora Maira, Gran Paradiso, Monte Rosa, Monviso, etc.)

<u>Personel</u>: 1 PhD <u>Theme(s):</u> 1 Activity field(s): E

Kind

<u>Goals:</u> 3D-seismic imaging of sub-lithospheric discontinuities <u>Challenge</u>: Distinguish mantle discontinuities in vicinity of slabs

Methods: application of S-receiver function technique

Targets: Alpine mantle between Moho and 410 km discontinuitiy

<u>Personel</u>: none <u>Theme(s):</u> 1 Activity field(s): A

Kopp, Lange, Grevemeyer

<u>Goals:</u> Obtain data for high resolution images of Alpine crust and mantle <u>Challenge</u>: LOBSTER - Deploy and operate land-based BB seismometers

Methods: Deploy and operate land-based BB seismometers

<u>Targets</u>: Ligurian Sea <u>Personel</u>: 1 Postdoc

Theme(s): relevant for all

Activity field(s): B

Kummerow, Cesca, Wassermann, Plenefisch

Goals: Quantify stress and deformation in the E Alps

Challenge: Analyse link between shallow crust and deep mantle structures, map active faults, map stress field

Methods: Apply novel moment tensor inversion technique to microseismicity

Targets: Eastern Alps lithosphere

<u>Personel</u>: 2 PhDs <u>Theme(s):</u> 3 Activity field(s): D

Lange, Thorwart, Grevemeyer

Goals: Resolve structure of Ligurian Sea with new OBS data and adjacent land stations

Challenge: Detection nad location of local seismiicity

Methods: Ambient noise cross correlation techniques, Rayleigh wave analysis

<u>Targets</u>: Ligurian lithosphere, slab geometry at transition Alps-Dinarides

<u>Personel</u>: 1 PhD <u>Theme(s):</u> 1 Activity field(s): B

Luijendijk & von Hagke

<u>Goals:</u> Quantify crustal fluid flow and its role in the thermal structure of the Alps Challenge: Determine contribution of fluid flow to thermal regime of Alpine crust

Methods: compile thermal data, numerical modelling of coupled, density-driven fluid flow and heat flow

<u>Targets</u>: Thermal springs in the Molasse Basin near end of Jura chain (their Fig. 2)

<u>Personel</u>: none <u>Theme(s):</u> 4 (2) Activity field(s): E

Meier, Friederich, Ebbing

Goals: Surface-wave tomography of the Alpine region

Challenge: Constrain slab geometry, lithospheric deformation and asthenospheric flow

Methods: analysis of surface waves (R & L), seismic anisotropy

Targets: all

Personel: 1 Postdoc, 1 PhD

Theme(s): 1
Activity field(s): A

Mulch, Ehler, Metner, Mutz

Goals: Neogene Paleoelevation and Paleoclimate of Central Alps

<u>Challenge</u>: Establish long-term elevation history of Central Alps (location, timing of elevation changes) and relate this to changes in

slab dynamics

Methods: stable isotope altimetry, clumped isotope studies, paleoclimate modelling of 7 time slices (Present back to Pliocene, 2

Middle Miocene from lit)

Targets: Swiss Molasse Basin, high Alps (Simplon Fault)

Personel: 2 PhDs Theme(s): 2

Activity field(s): E

Petrunin

<u>Goals:</u> Cenozoic evolution of the Alps

Challenge: Not mentioned

Methods: Inverse and forward multiscale modelling

Targets: Alps

Personel: 1 Postdoc (own position)

Theme(s): 1
Activity field(s): F

Pleuger, John, Tilmann, Handy, Kaus, Yuan, Mechie

Goals: Linking images of subducted continental crust with geophysical slab images

Challenge: Develop 4D view of subduction and exhumation by comparing fossil subduction zones with current slab images

Methods: multiscale structural & kinematic analysis of subducted & exhumed crust, petrophysical measurements of CPO (Vp, Vs)

and receiver function analysis, synthetic seismograms, forward numerical modelling

Targets: E Alps slab, hI-P rocks & structures (Tauern, Adula, Dora Maira, Tenda)

Personel: 3 PhDs Theme(s): 1, 3

Activity field(s): D, E, F

Reicherter & Ritter

Goals: Understand stress transfer & Quaternary faulting in Alpine foreland

<u>Challenge</u>: Correlating seismicity with shallow crustal faulting, fault reactivation and stress state

<u>Methods</u>: paleostress analysis, 3D imaging of crust with receiver functions <u>Targets</u>: Molasse Basin (Albstadt, German Molasse), Upper Rhine Graben

Personel: 1 PhD Theme(s): 4

Activity field(s): A, E

Rümpker & Schmeling

Goals: Understand mantle deformation beneath the Alps and the physics of subduction polarity switch

<u>Challenge</u>: 4D modelling of surface response to subduction-polarity switch

Methods: thermomechanical modelling, seismic anisotropy and waveform modelling

Targets: Alps-Apennines & Alps- Dinarides transitions

Personel: 2 PhDs Theme(s): 1

Activity fields: A, F

Scheck-Wenderoth, Ebbing, Sippel, Götze

Goals: 3D model of structure, thermal state and rheology of the Eastern Alps and their northern and southern foreland basins along TRANSALP

Challenge: Combine geothermal, seismological, gravity data to make an internally consistent model

Methods: 3D gravity and thermal modelling

Targets: Eastern Alps and Molasse & Veneto basins along TRANSALP

Personel: 1 Postdoc, 1 PhD

Theme(s):3

Activity fields: E, F

van Hagke, Luijendijk, Hindle, Kley

Goals: Link foreland basin evolution to deep crustal processes

<u>Challenge</u>: Mantle processes manifested differently in different parts of Molasse (W – slab breakoff, E – polarity reversal)

Methods: AFT, AHe, thermal modelling, balanced cross sections

Targets: 3 transects across Molasse (W of Moho gap to N of Tauern W, across Molasse between Zürich and Salzburg)

<u>Personel</u>: 1 PhD Theme(s): 2, 3 Activity field(s): E

Weber, Tilmann, Haberland

Goals: Depict 3D geometry of lithosphere and upper mantle across slab gap, along E Alps slab and along Moho "hole", provide

better database for seismic hazard assessment

Challenge: Obtain sufficient high-resolution data to improve constraint on geometery of structures above

Methods: Deployment of closely spaced BB seismometers

Targets: Swath D
Personel: 1 Postdoc

Theme(s): relevant for all

Activity field(s): D